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E.1 - Historical Context

Aristotle   384-322 BC

Rest is the natural state.  The problem of physics was to explain why a body had a velocity.
It is a matter of common experience that after giving a body a push, it will eventually slow to a stop.  When a body is pushed it is given an

impetus; it continues to move until it loses that impetus.  This notion is now known as incorrect.

Aristotle  was  a  philosopher  and  physics  was,  for  him,  just  natural  philosophy.   This  perspective  led  to  a  de-emphasis  of  experiment.
Physics was a subject one thinks about and writes about,  but there was no need to test ideas with experiment.  The history of science is filled
with mistakes; what made Aristotle's mistakes so serious was that by de-emphasizing experiment no one found his errors for almost 2000 years.

As  an  example  of  the  absurdity  of  Aristotelian  physics,  Aristotle  claimed  that  heavier  bodies  fall  faster  that  lighter  ones.   This  seems
intuitive at first; a brick falls faster than a feather.  But he took it a step further by saying that the rate is in proportion to a body's mass.  This was
a precise mathematical statement and verifying it was as simple as dropping two objects of different mass.  It is remarkable that for almost 2000
years no one thought of performing that experiment to test Aristotle's hypothesis.

Galileo Galilei   1564-1642

Galileo was the one who finally performed the free-fall experiment mentioned above.  He observed that bodies of different mass fall with
the same acceleration.  In fact, most of the earlier material on kinematics of free fall and projectiles is due to Galileo realized that a feather fell
slower than a hammer because of some extra force that we now know as friction.

Motion with constant velocity is the natural state.  The problem of physics was to explain what caused changes in 
velocity, or what caused acceleration.

The reason why a body, when given a push on a horizontal surface, slows to a stop is due to friction.  One can create motion with less friction
and can imagine motion without  any friction.   In that  case the body will  continue to move indefinitely.   Naturally bodies move with constant
velocity unless some net force causes it to have an acceleration.

Galileo was a transitional figure.  He demonstrated the inadequacy of Aristotelian physics.  He also asked the right questions.  The problem
of understanding motion was no longer to explain why a body moves but to explain what caused changes in the motion.

Isaac Newton   1642-1727

Newton  grew  up  in  a  Galilean  world;  the  fallacies  and  misconceptions  of  Aristotelian  physics  were  no  longer  a  part  of  one's  education.
Galileo had properly posed the problem: What  causes acceleration.   Newton was the remarkable genius capable of  providing the answer.   He
summarized dynamics in terms of three laws.

It would be hard to overstate the historical significance of Newton.  In addition to fundamentally altering later intellectual developments, he
had  a  profound influence  on  the  practical  aspects  of  common life;  the  technological  explosion  leading  to  the  Industrial  Revolution  is  directly
related to his clear exposition of the science of mechanics.

E.2 - Newton’s First Law
Newton with his first law summarized what Galileo had done.  The idea is that motion with a constant velocity is the natural state.



An object at rest tends to stay at rest.  An object in uniform linear motion tends to maintain that motion.  The 
word "tends" should be taken to mean: unless acted upon a net force.

The first sentence sounds more Aristotelian than Galilean.  Uniform linear motion implies motion in a straight line at a constant speed, that is:
constant velocity.  Rest should only be viewed as a special case of constant velocity; it is a constant zero velocity. 

A force is anything that pushes or pulls on an object.  We will see that forces are vectors.

False Forces

Recall that a frame of reference is some coordinate system used to study motion.  In an accelerated frame, for example inside an accelerat-
ing car, one feels one's self pushed opposite the direction of acceleration.  When moving in a car in a straight line and braking, the acceleration is
backward and one feels a false force pushing forward.  When turning to the left, the acceleration is to the left and the false force is to the right.
Generally, in any accelerated frame there is a false force opposite the acceleration.

What  is  the  nature  of  these  false  forces?   The  point  of  the  first  law is  that  all  bodies  will  tend  to  move  with  a  constant  velocity.   When
braking in a car, a person in the car will tend to keep moving at a constant velocity but the car slows around him.  Relative to the car he is thrown
forward.  Similarly, when turning to the left in a car the person tends to continue in a straight line and the car moves to the left.

The Principle of Relativity

The principle of relativity is built in to Newtonian mechanics.  It is a result of Galileo's observations on motion.  This notion of relativity is
known as Galilean Relativity and should be contrasted with Special Relativity which was introduced by Albert Einstein in 1905.

All inertial frames of reference are equivalent.
Recall  that  a  frame of  reference  is  some coordinate  system used  to  study  motion.   If  someone  (preferably  a  passenger)  throws  a  ball  straight
upward in a car moving with a constant velocity, it will move in a way that is indistinguishable from free fall.  To an observer on the side of the
road the ball would move as a projectile but to both observers the acceleration would be the same, a downward acceleration of g.  If the car is
turning, or accelerating in any way, then there will be false forces and the motion will deviate from free fall.

An inertial frame is a rest frame or a non-rotating frame moving at a constant velocity with respect to a rest frame.
Basically, an inertial frame is a non-accelerated frame.  The equivalence of inertial frames means that there is no preferred absolute rest frame.
Moving with a constant velocity is indistinguishable from being at rest.  Suppose some experiment is performed in a van moving at a constant
velocity.  (We assume the road is as smooth as possible.)  The result of that experiment will be give the same result as if the van were at rest.

Space and time are absolute in Galilean relativity.
Absolute space means that space is three dimensional Euclidean space.  The length of a meter stick is the same to all observers and is indepen-
dent  of  relative  motion.   If  x,  y  and  z  are  coordinated  relative  to  one  frame  and  x′,  y′  and  z′  are  coordinates  relative  to  a  different  frame  the
lengths (actually length-squared) being equal can be written as

Δx2 + Δy2 + Δz2 = Δx′2 + Δy′2 + Δz′2 (Absolute Space)
Absolute time implies that the time between two events (two different positions and two different times) is the same for all observers. If Δt is the
time between two events in one frame and Δt′ is the time relative to another frame, then

Δt = Δt′ (Absolute Time)

Einstein's Special Relativity eliminated the notions of absolute space and time.
Although relativity had been a well-established principle of classical mechanics, it became clear in the middle of the nineteenth century that the
laws of electromagnetism, which were summarized by Maxwell's  four equations,  violated this principle.   It  appeared that Maxwell's  equations
were  valid  in  only  one  absolute  rest  frame.   In  1905  Einstein  realized  that  Maxwell's  equations  were  valid  in  all  inertial  frames  and  he  put
relativity  back  into  fundamental  physics.   To  do  this  however  he  had  to  modify  the  notions  of  absolute  space  and  time  that  were  implicit  in
Galilean relativity.

In  special  relativity,  lengths  and times  are  different  frames  but,  it  turns  out,  that  the  length-squared minus  the  time-squared is  the  same in  all
frames, where we multiply time by the speed of light c to make the units work out.

Δx2 + Δy2 + Δz2 - c2 Δt2 = Δx′2 + Δy′2 + Δz′2 - c2 Δt′2

E.3 - Newton’s Second Law
One  can  state  the  second  law  with  words,  as  in  the  case  of  the  first  law,  but  it  just  becomes  a  complicated  sentence  dictating  a  simple

equation.  It will then be given as an expression.

2 | Chapter E - Newton's Laws



Fnet = m a (E.1)

The net force Fnet is the vector sum of all forces acting on a body.  m is the mass of the body and a is its acceleration.  Newton's first law may be
viewed as a consequence of the second.  If  Fnet = 0 then a = 0 and this implies v is a constant.

Definition of Mass and Force

Force is a measure of the amount that something pushes or pulls.  Mass is a measure of the amount of material.  The second law may be
considered a simultaneous definition of force and mass.  To define a mass all we need is a notion of a reproducible force.  For example consider
a  spring  that  is  compressed  by  a  fixed  amount  to  a  standard  distance;  if  that  spring  is  then  compressed  to  that  same  standard  distance  will
produce  the  same force  and this  is  reproducible.   If  we call  this  force  F0  then we can act  this  same force  on different  masses  m0  and m,  and
measure their instantaneous accelerations.  If m0 gets an acceleration a0 and m gets acceleration a.  We can then write the ratio of the masses in
terms of the ratio of the accelerations.

F0 = m0 a0 = m a ⟹
m

m0
=

a0

a
To verify that this can be used as a definition of mass imagine grabbing some rock and choosing that as the standard of mass; call it 1 Rock.

If the mass used is this standard rock, then m0 = 1 Rock; if the second mass gets an acceleration that is 1/2 that of the rock then we conclude that
its mass is m = 2 Rocks.

To show how the second law is a definition of force we act different forces on the same mass, m0.  

F0 = m0 a0 and F = m0 a ⟹
F

F0
=

a

a0

Units:  The SI unit for Force is:  N = newton = kg ms2

E.4 - Newton’s Third Law

Newton's third law is crucial for a proper understanding of force.  If F12 is the force of body 1 on body 2 and F21 is the force of 2 on 1, then

F21 = -F12 (5.2)

This is often stated in the language of action-reaction pairs: to every action there is an equal and opposite reaction.  Equal and opposite means
that one vector is the negative of the other.

At first glance the third law is counter-intuitive.  When a small car gets in a collision with a large truck the force of the truck on the car is
the same, in magnitude, as that of the car on the truck.  The same force on a smaller mass has a larger effect,  meaning that since F = m a  the
acceleration is larger.  For an extreme example, the gravitational force of the Earth on a person is equal in magnitude to the force of the person
on the Earth.  Since the mass of the Earth is much larger the acceleration of the Earth is negligible.

Tension, Normal Forces and Surface Friction

Suppose ten people pull on a rope in a tug-of-war.  Each person can pull with a force of F0.  Suppose five pull on one side and five pull on
the other.  The total force pulling in either direction is 5 F0, which is then the tension in the rope.  Suppose instead all ten pull on the same side
against a tree.  The force pulling, and thus the tension, is now 10 F0.  In this second case the rope pulls on the tree with the T = 10 F0 and by the
third law the tree pulls back with the same force; the tree then is equivalent to another ten people pulling on the other side.  At any position P in
a rope, the left part of the rope pulls to the left with a force T and the right part pulls to the right with a force of T.  A spring scale that stretches,
like a fish scale, reads this tension force in a rope.

Forces between surfaces break up into two components: perpendicular to a surface is the normal force and parallel to a surface are friction
forces.  The word normal means perpendicular.  When a person stands on a floor he pushes down on the floor with a normal force N equal to his
weight.  The floor then pushes up on the person with the same magnitude force.  Suppose instead that a person leans against a wall.  The person
pushes into the wall with normal force of N and the wall pushes back on the person with the same magnitude normal force.  Friction forces also
break up into equal and opposite pairs.  When an object slides to a rest on a floor, the floor pushes backward on the object with a force known as
kinetic friction; the object then exerts a forward friction force on the floor.  When a walking person pushes backward on the floor with a static
friction force, the floor pushes forward with the same force.
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E.5 - Applying the Second Law

Free-body Diagrams

The left hand side of the second law, Fnet, is the vector sum of all forces acting on a body.  To help with this we draw a free-body diagram;
this is  a vector diagram showing all  forces acting on the body.  To draw a free-body diagram we must include contact  forces and action-at-a-
distance forces.

Include all contact forces.
Contact  forces  are  due  to  all  things  in  contact  with  the  body.   Imagine  a  surface  around  the  body;  the  contact  forces  are  due  to  everything
piercing that surface.  If something is standing on a floor or leaning against a wall then we draw the corresponding normal forces and perhaps
friction forces.  Air is in contact with a body and its effects, if they need to be considered, will be contact forces.

Include field forces
The forces that can act on a body without touching it are the field forces.  These are the fundamental forces of nature: gravity, electromagnetism,
the weak nuclear force and the strong nuclear force.  The two nuclear forces act only over short distances and, for purposes of classical mechan-
ics,  can  be  neglected.   It  should  be  pointed  out  that  the  electromagnetic  and weak nuclear  forces  are  no  longer  considered  separate  forces;  in
1968 the Electroweak unification was published and it was experimentally verified in the early eighties.

In Newton's time these forces were considered action-at-a-distance, that is distant objects directly interacting.  This Newtonian notion implies an
instantaneous  interaction  over  arbitrarily  large  distances.   We  now  understand  interaction  in  terms  of  the  notion  of  a  field.   The  idea  is  this:
Particles create fields, fields propagate at a finite speed by dynamical rules and then fields exert forces on other particles.  

Accelerations do not belong in free-body diagrams.
The free-body diagram gives the left-hand side of the second law.  The right-hand side involves the acceleration.  It is important that to note that
m a is not a force and does not belong in the free-body diagram.  It is a good idea to draw the acceleration next to the diagram, though.  Being
systematic with directions, as we were in earlier chapters, is more trouble than it is worth.  The easiest method is to choose the direction of the
acceleration as positive.

One Dimensional Examples

A Standing Person / A Hanging Weight

It follows from the second law that the normal force equals the gravitation force on the person, his weight.

Fnet = m a ⟹ N - W = 0 ⟹ N = W.

A bathroom-type spring scale, which is compressed, reads the normal force.  This, in this stationary case, is just the weight.

For the hanging mass it is the same but there is a tension force pulling up instead of the normal force pushing up.

Fnet = m a ⟹ T - W = 0 ⟹ T = W.

Tension is read by the other type of spring scale, one that you stretch.  Think of a fish scale or a hanging produce scale in a grocery.

Free Fall and Weight
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When and object is in free-fall, the only force acting on a body is its weight.  As we established in Chapter B it has a downward acceleration
of g.  Choosing downward as positive the second law implies that the weight equals the mass times the acceleration due to gravity.

Fnet = m a ⟹ W = m g

This expression applies generally to give the weight of a body of mass m in a gravitational field.  The strength of that field is g, the acceleration
due to gravity.   Do not  think of  g  as  an acceleration but  as  the proportionality between weight  (a  force)  and mass,  which is  dimensionally an
acceleration.  If gravity is the only force acting on a body, as is the case of free-fall, then the downward acceleration is g.

Elevators and Apparent Weight

Fnet = m a ⟹ N - m g = m a ⟹ N = m g + m a

The normal force here, which can still be read by a spring scale, is called the apparent weight.  Similarly, a mass being lifted by a rope an
upward acceleration will experience the same apparent weight, but the express would be for the tension instead of the normal force.

Note that for an object in free-fall  a = -g, so its apparent weight is zero. This is called weightlessness. An orbit is a perpetual state of free-
fall. There is no apparent weight in orbit. Weightlessness does not mean there is no gravity; in a low-earth orbit and astronaut’s weight is just a
little less than his earth weight. The point is that the astronaut feels no gravity; the apparent weight is zero.

Spring Scales and Balance Scales
Spring scales measure weight. On the moon, the acceleration due to gravity is about one-sixth that on the earth. A spring scale on the moon

would give one-sixth the earth weight. There are two types of spring scales. 

T T

A tension spring scale measures the tension in a rope or string.

A tension spring scale  stretches  under  tension and the  amount  the  spring stretches  depends  on the  tension;  it  can be  used to  measure  tension.
Hanging something from one measures its weight. Think of a fish scale.

N

N

A compression spring scale measures a normal force.

A bathroom-type scale is a spring scale that compresses. The amount it compresses varies with the normal force and thus, it measures the normal
force between surfaces. Standing on one gives a person’s weight.

A balance scale is  fundamentally different;  it  measures mass.  The simplest  balance scale has two well-balanced trays pivoting symmetri-
cally on a fulcrum. An unknown mass is placed on one side and known masses are added to the other side until there is balance.

Chapter E - Newton's Laws | 5



A balance scale measures mass.

It should be clear that the setup above would give the same result on the moon as on the earth; it measures mass not weight. Although the simple
balance shown above is  conceptually clearest,  there are many other common types.  For example,  a triple-beam balance is  common in physics
labs; an unknown mass is placed on a tray and masses are moved along bars until there is a balance. Also a doctor’s office-type scale uses the
same principle and also measures mass.

Two Dimensional Examples

When given a two dimensional problem we first draw a free-body diagram. Next, we resolve all forces and the acceleration into a coordi-
nate system representing a pair of perpendicular directions. Applying the second law to both perpendicular directions gives a pair of equations.
Resolving all forces (or accelerations) into the perpendicular directions requires only the simple trigonometry from a right triangle; the force (or
acceleration) will the the hypotenuse h of the right triangle and the opposite and adjacent sides will be h sin θ and h cos θ, respectively.

sa =h cos θ

so =h sin θ
h

θ

Block on a Frictionless Inclined Plane
Consider the case of a block sliding down a frictionless inclined plane.  We will, as is the convention, always refer to the angle of an incline

as the angle of the surface measured from horizontal.  First we draw the free-body diagram.  The only thing touching the block is the surface of
the incline.  Recall that surface forces break up into two components: perpendicular to the surface is the normal force N.  The friction forces are
parallel to the surface; since there is no friction we have the normal force as the only contact force.  Then we add in the weight  m g which acts,
of course, downward.  Note that the angle between the surface's normal and vertical is the same as between the surface and horizontal.

⊥

∥
θ

N
a

m g

m g sin θ
m g cos θ

Since surface forces split naturally into parallel and perpendicular components, it  is typically best to choose the coordinates to be parallel
and perpendicular to the surface.  The normal force is already resolved along the perpendicular direction.  Whenever there is an inclined plane at
angle θ resolving the weight into parallel and perpendicular components always gives:

W⊥ = m g cos θ and W∥ = m g sin θ.

The acceleration only has a parallel component and that is just a.  Applying the second law to the parallel direction we get

Fnet, ∥ = m a∥ ⟹ m g sin θ = m a ⟹ a = g sin θ.

Solving the second law in the direction perpendicular to a surface always gives the normal force.
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Fnet, ⊥ = m a⊥ ⟹ N - m g cos θ = 0 ⟹ N = m g cos θ.

If we are just solving for the acceleration this value isn't needed; we will see that in examples involving friction that the normal force will be of
interest.

Example E.1 - The Accelerating Pendulum as an Accelerometer

Anything hanging in a vehicle can be used as an accelerometer, meaning it that can measure acceleration.  Relate the hanging angle, as
measured from vertical as shown, to the acceleration.  

Solution
Here  we will  choose  our  perpendicular  axes  to  be  horizontal  (in  the  direction  of  the  acceleration)  and vertical.   Note  that  the
forces do not balance here; they should not balance because there is an acceleration.

hor

ver

mg

a

θ
T

T sin θ

T cos θ

After resolving the tension into horizontal and vertical components, we apply the second law to each direction and get:

Fnet,hor = m ahor ⟹ T sin θ = m a

Fnet,ver = m aver ⟹ T cos θ - m g = 0 ⟹ T cos θ = m g.

From these two expressions we can relate the acceleration to the angle.   Divide the second expression into the first  and using
tan θ = sin θ /cos θ we get:

a = g tan θ

Zero Acceleration

In any application of the second law where the acceleration is zero, it follows that the forces balance.

Fnet = 0
Solving such a problem is not different than problems with accelerations;  the second law is resolved into a pair  of perpendicular directions to
give a pair of equations. The simplification is that instead of summing the forces to zero in some direction, one can balance them. Replace, for
instance Fnet,ver = 0 with Fup = Fdown or replace Fnet,hor = 0 with Fleft = Fright.

Example E.2 - A Weight Hanging from Two Ropes

T1 T2

45 N

25° 43°
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A 45-N weight is hung from a ceiling by two ropes as shown. What are both tensions, T1 and T2?

Solution
The first step, as always, is to draw a good free-body diagram. Then resolve the forces into a pair of perpendicular directions, in
this case horizontal and vertical.

T1

T2

T1 cos 25°

T1 sin 25°

T2 cos 43°

T2 sin 43°

45 N

25° 43°

There is no acceleration so the horizontal and vertical force balance. Horizontally, we have T1cos θ1  to the left and T2cos θ2  to
the right.

Fnet,hor = m ahor = 0 ⟹ T1 cos 25 ° = T2 cos 43 °

In the vertical direction there are T1sin θ1 and T2sin θ2 acting up and W down.

Fnet,ver = m aver = 0 ⟹ T1 sin 25 ° + T2 sin 43 ° = 45 N

Using the horizontal expression we can solve for T2 and then insert that into the vertical expression to solve for T1.

T2 = T1
cos 25 °

cos 43 °
⟹ T1 sin 25 ° + T1

cos 25 °

cos 43 °
sin 43 ° = 45 N

⟹ T1 =
45 N

sin 25 ° + cos 25 °
cos 43 °

sin 43 °
= 35.5 N

 It is then easy to find T2.

T2 = T1
cos 25 °

cos 43 °
= 44.0 N

Problems with More than One Mass

Newton's second law applies to every mass in the universe.  When considering a mechanics problem with multiple masses we follow the
procedure outlined above for each mass; there is a separate free-body diagram for each mass.

Atwood's Machine
An ideal pulley is frictionless and light.  The approximation of a pulley being frictionless is often appropriate.  For a pulley to be light its

mass must be small compared to the other masses in the problem.  With an ideal pulley the tension is the same on both sides of the pulley.

Atwood's machine is a standard example.  It consists of two masses m1  and m2  connected by a string over an ideal pulley.  Here we take
m1 < m2.   It  is  clear  that  m1  will  accelerate  upward  and  m2  will  accelerate  downward.   We  make  the  assumption  that  the  string  is  ideal;  this
means that it has negligible mass and does not stretch.  In this case, the ideal string assumption implies that whatever distance m1moves upward,
m2  moves downward.  Since the acceleration is the second derivative of the position we can then conclude that two accelerations are equal in
magnitude.

8 | Chapter E - Newton's Laws



T

m1g

a

m1

T

m2g

a

m2

We now apply  the  second law to  each mass.   It  is  usually  easiest  to  choose  the  direction of  the  acceleration  to  be  the  positive  direction.
Doing that here we will choose up to be positive for m1 and down for m2.  Using this convention we get:

Fnet,1 = m1 a1 ⟹ T - m1 g = m1 a

Fnet,2 = m2 a2 ⟹ m2 g - T = m2 a

In these two expressions the tension and acceleration are the unknowns.  The easiest method for solving for the acceleration is to add the two
expressions, eliminating the tension.  This gives:

a =
m2 - m1

m1 + m2
g.

A System of Pulleys

5 T

W

a=0

To find the net force lifting on the weight look at all the ropes pulling upward on the object.  As a rule when pulleys are attached to a mass
always consider the pulleys as part of the mass as shown.  There are five ropes leaving the object.  Assuming all pulleys are ideal, we get that
there is a total force of five T pulling upward.

Fnet = m a ⟹ 5 T - W = 0 ⟹ T =
W

5
This is an example of a mechanical advantage.  With this pulley arrangement a heavy weight can be lifted with a force that is 1/5 the weight

of the object.  One is not getting something for nothing here.  The assumption that the rope doesn't stretch implies that lifting the weight a certain
distance involves pulling five times the distance on the rope.  This is generally the case with a mechanical advantage and is the basis of simple
machines.  One can apply a smaller force but it must act over a larger distance.

Example E.3 - A More Complex Arrangement

Consider the arrangement shown below.  Assuming the incline is frictionless and the pulleys are ideal, what is the acceleration of m1
down the incline?
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Solution
The assumption that the string does not stretch allows us to relate the accelerations. Whatever distance m1  slides down the incline, m2
moves upward by that same amount. It follows that the accelerations of m1 and m2 are the same magnitude.

T

m2g

a

m2m1⊥

∥
θ

N
T

a

m1g

m1g sin θ
m1g cos θ

Since there is no friction and we don't need the normal force we can avoid the resolution of forces on m1 perpendicular to the surface.
The second law applied to the parallel direction gives:

Fnet, 1, ∥ = m a1, ∥ ⟹ m1 g sin θ - T = m1 a

Applying the second law to m2 gives:

Fnet,2 = m a2 ⟹ T - m2 g = m2 a

The simplest way to find a is to eliminating T by adding the two expressions above.

a =
m1 sin θ - m2

m1 + m2
g
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