
Chapter F

Applications of Newton’s Laws
Blinn College - Physics 1401 - Terry Honan

This  chapter  discusses  the  kinematics  and  dynamics  of  circular  motion,  and  considers  the  problem of  motion  in  an  accelerated  frame  of
reference.  More applications on the second law will also be presented.

F.1 - Forces of Constraint
Often in mechanics problems the motion of objects  is  constrained.   A force of  constraint  is  responsible for  keeping the constraint;  it  will

take on whatever value is needed to maintain its constraint.  Often forces of constraint satisfy inequalities.  These vague general comments will
become clearer as examples are given.  The examples we will discuss here are tension forces, normal forces and static friction forces.

Tension Forces as Constraints

Tension is a force of constraint.   The constraint associated with tension is the condition that the length of the rope stays constant.  In our
examples with ropes and two masses, this condition is what related the accelerations of the masses.  In Atwood's machine the string not stretch-
ing meant that the two masses moved the same distance, implying the accelerations were the same magnitude.  In the example with two pulleys
the mass that moved twice the distance of the other had twice the acceleration.  These conditions eventually lead to a value for the tension forces.
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Interactive Figure

The interactive figures above illustrate tension as a force of constraint.  Both show a weight W hanging from a string or rope.  On the left an
applied force F pulls downward on the rope.  The larger F gets the larger T = W + F gets; the tension T will take on whatever value is needed to
maintain the constraint.  The figure on the right shows the same hanging weight but now the applied force acts upward.  As the applied force F
gets larger T = W - F decreases.  It is clear that if F is larger than the weight W, then the string will lost its tension and the mass will accelerate
upward.  To maintain the constraint the tension would need to be negative, but it cannot.  The tension force satisfies a simple inequality  

T ≥ 0.

This is equivalent to saying: "You can't push with a rope."  Note that negative tensions are possible for rigid objects, like a stick.

Normal Forces as Constraints

The normal force is also a force of constraint.  The constraint is that there is no motion through the surface.  
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Consider a block sitting on a floor as in the interactive figures above.  Without an applied force, the normal force is the weight of the book W.  If
one pushes down on the book with an applied force F, as in the left figure, then the floor pushes up with a larger normal force of N = W + F; as
F  gets  larger,  N  gets  larger.   If  a  small  force  F  lifts  on  the  block,  as  described  by  the  figure  on  the  right,  then  the  normal  force  N = W - F
decreases as F increases.  If the lifting force exceeds the weight the normal force the book will lift; N would have to be negative to maintain the
inequality.  A surface can only push away from it

N ≥ 0.

A negative normal force would describe suction or glue.

Because the normal force is a constraint it is always found by solving the second law perpendicular to the surface.

Fnet, ⊥ = m a⊥

One does not just insert a value of N into a problem solution; it is something you calculate using the above expression.

Friction Between Surfaces

Recall that forces from surfaces break up into two components: the perpendicular component is the normal force and the parallel component
is  friction.   There  are  two  types  of  friction  between  surfaces,  static  and  kinetic.   Static  friction  is  the  case  when  there  is  no  sliding.   Kinetic
friction is when there is sliding.  These are very different things.  Static friction is a force of constraint.  Kinetic friction is a dissipative force.
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W
F

W

N

F

a=0

fs

fs=F
F fsmax F

fk
fsmax

F

f

No Sliding Sliding
f = fs f = fk

Interactive Figure

The interactive figure above shows a horizontal pushing force F acting on a block of weight W.  The force of static friction fs  will keep the
block from sliding.  It must then act opposite to F and must have the same magnitude, fs = F.  As F increases, so does fs.   It should be clear that
if F is large enough the block will slide.  There is a largest value of the force of static friction fsmax.  When the block slides then there is no longer
static friction and we get kinetic friction fk.

Static friction is a force of constraint; the constraint is that there is no sliding.  No sliding implies that the accelerations of the two surfaces
are the same.  Since it is a constraint we always solve for its value by using
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Fnet, ∥ = m a∥.

There is an upper limit on static friction.  The constraint is that the maximum value is proportional to the normal force.

fs ≤ μs N

μs is a dimensionless constant called the coefficient of static friction; it is a property of the two surfaces in contact.  At the critical point between
sliding and not the inequality is saturated; that is it become equal: fsmax = μs N.

We will demonstrate static friction with two examples: one with no acceleration and another with acceleration.

Example F.1 - Stationary Block on an Incline

To measure the coefficient of static friction between a block and wood plank a student finds the largest angle the plane can have while
the block does not slide.  If this largest angle is measured to be 28°, then what is the coefficient of static friction between the block and
the surface.

Solution
First  we  draw  the  free-body  diagram.   All  that  is  touching  the  block  is  the  surface,  so  the  surface  provides  the  only  contact
forces.   Perpendicular  to  the  surface  is  the  normal  force  N.   Now  that  we  have  friction  we  also  must  include  the  parallel
component, which is static friction fs.  To find the direction of the static friction force ask what will happen without it; fs  must
act  up  the  incline  to  prevent  it  from  sliding  down.   We  break  up  the  weight  mg  into  components  as  is  typical  for  problems
involving  inclined  planes.   The  condition  that  the  block  is  not  sliding  implies,  since  the  surface  is  stationary,  that  the
acceleration is zero.

⊥
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m g

m g sin θ
m g cos θ

Applying  the  second law to  our  pair  of  perpendicular  directions  gives  expressions  for  the  static  friction  force  and  the  normal
force.

Fnet, ∥ = m a∥ ⟹ m g sin θ - fs = 0 ⟹ fs = m g sin θ

Fnet, ⊥ = m a⊥ ⟹ N - m g cos θ = 0 ⟹ N = m g cos θ

We  then  use  our  constraint  inequality  fs ≤ μs N,  which  is  the  condition  for  the  block  not  sliding.   We  then  insert  the  above
values  for  fs  and  N.   (Be  careful  when  doing  algebra  with  inequalities;  multiplying  or  dividing  by  a  negative  changes  the
direction of the inequality.  Here we are diving by only positive quantities.)

fs ≤ μs N ⟹ m g sin θ ≤ μs m g cos θ ⟹ tan θ ≤ μs

At θmax, the largest angle without sliding, we saturate the inequality and get our result.

μs = tan θmax = tan 28° = 0.532

Note that the mass was not given but that scaled out of the problem.
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Example F.2 - Crate on Flat Accelerating Surface

A truck with a forward acceleration of 2.5 ms2  carries a crate inside.  If coefficient of static friction between the crate and the floor is
0.30, will the crate slide?

Solution
The only thing touching the crate is the truck’s floor; the only contact forces are the two surface forces, the normal force and,
assuming no sliding, static friction.  The direction of the static friction is forward.  Without friction, the crate slides backward
and friction prevents that.  The only other force to include in our free-body diagram is the weight.
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Again,  applying  the  second  law  to  our  pair  of  perpendicular  directions  gives  expressions  for  the  static  friction  force  and  the
normal force.

Fnet, ∥ = m a∥ ⟹ fs = m a

Fnet, ⊥ = m a⊥ ⟹ N - m g = 0 ⟹ N = m g

The  constraint  inequality  fs ≤ μs N,  is  the  condition  for  the  block  not  sliding.   Inserting  the  information  above  gives  the
condition.

fs ≤ μs N ⟹ m a ≤ μs m g ⟹ a ≤ μs g

a = 2.5 ms2, μs = 0.30 and g = 9.80 ms2 ⟹ 2.5 ≤
?

2.94

The question mark above the inequality is used because it is a test, not a mathematical statement.  Since the test is satisfied the
crate will not slide.

F.2 - Dissipative Friction
When moving with  respect  to  a  surface  or  medium there  is  a  resistive  friction force  that  opposes  the  relative  motion of  the  object  to  the

surface or medium.  If v  is the unit vector in the direction of the relative velocity of the object (to the surface or medium) then the friction force is
opposite that direction.

f = - f v

The values of f for different cases will be discussed below.
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Kinetic Friction

Kinetic friction is the dissipative force when there is sliding between two surfaces.  Its direction opposes the direction of the sliding.  The
magnitude of the force of kinetic friction is fixed at the value

fk = μk N.

μk is the coefficient of kinetic friction.  Like the static friction case, it is a property of the two surfaces.

Example F.3 - Block Sliding on an Incline

A block is pushed and released at the bottom of an incline at angle θ.  It slides up the incline, stops for an instant and then slides down
the incline.  The coefficient of kinetic friction between the block and the incline is μk.

(a) When sliding up the incline what is its acceleration?  Take an acceleration down the incline to be a positive a.

Solution

Applying the second law the direction perpendicular to the surface gives the normal force.

Fnet, ⊥ = m a⊥ ⟹ N - m g cos θ = 0 ⟹ N = m g cos θ

The parallel component equation of the second law gives an expression for a.

Fnet, ∥ = m a∥ ⟹ m g sin θ + fk = m a

We then use our expression for kinetic friction fk = μk N.  Combining this with our expression for N gives fk = μk m g cos θ. We
can then solve for a by dividing out the mass.

m g sin θ + μk m g cos θ = m a ⟹ a = g sin θ + μk g cos θ

(b) When sliding down the incline what is its acceleration?  Take an acceleration down the incline to be a positive a.

Solution
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This part is identical to the case above except the kinetic friction is now up the incline and thus comes in with the opposite sign.

Fnet, ⊥ = m a⊥ ⟹ N - m g cos θ = 0 ⟹ N = m g cos θ

Fnet, ∥ = m a∥ ⟹ m g sin θ - fk = m a

Since the normal force is the same as before, the kinetic friction force is the same. This gives:

a = g sin θ - μk g cos θ

Friction in a Medium

When an object moves through a fluid, a liquid or a gas, it experiences a friction force with a magnitude that varies with the speed.  This is
in contrast to kinetic friction which has a fixed magnitude independent of the speed.  There are two simple ways to model friction in a medium:
viscous friction, which is proportional to the speed and quadratic drag, which is proportional to the speed squared.

Viscous Friction
Typically, at low speeds when the fluid flow around the object is laminar (smooth) the friction behaves as viscous friction.

f = b v

v is the speed and the constant b depends on the viscosity of the fluid and the geometry and surface texture of the object.

Quadratic Drag
At speeds higher than where the fluid flow around the object becomes turbulent the friction force becomes quadratic drag.

f = c v2

The constant c depends on the viscosity of the fluid and the geometry and surface texture of the object.

F.3 - Springs and Hooke’s Law
Hooke's  law is  the  force  law for  a  spring.   Define  x = 0 to  be  the  relaxed  position  of  a  spring,  the  equilibrium position,  and  let  x  be  the

amount the spring is stretched from equilibrium.  Hooke's law states that there is a proportionality between F and x, F ∝ x.  We can introduce a
constant of proportionality k called the spring constant or force constant.  

F = k x (Force on spring)

The spring constant is a property of a particular spring; a stiff spring has a large k and a loose spring has a small k.  In this expression F is the
force stretching the spring.  Usually we consider the force of the spring itself when considering Hooke's law.  By Newton's third law this is the
negative of the force on the spring and we get

F = -k x (Force of spring).
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Note  that  when  the  spring  is  stretched,  x  is  positive  and  the  force  is  negative.   When  the  spring  is  compressed  the  force  is  positive  and  x  is
negative.

A force is said to be elastic when it satisfies Hooke's law.  We will see that elasticity is quite common for sufficiently small deformations of
almost anything.  What is special about springs is they maintain their elasticity over large deformations.  It should be clear that even a spring will
violate Hooke's law when stretched a very large distance.

F.4 - Kinematics of Circular Motion

Uniform Circular Motion - Centripetal Acceleration
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Interactive Figure

We will first consider the case of uniform circular motion, where uniform means that the speed stays constant.  Even with a constant speed
there an acceleration, since the direction is changing. To find the acceleration we will first consider a finite time Δt and the average velocity and
average acceleration.  We will then let the time approach zero; the average values will then approach the instantaneous values.
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Take ri  and r f  to be the initial  and final position vectors at  times ti  and t f  where Δt = t f - ti.   The velocities at  these times are vi  and v f ;
since the speed is constant these have the same magnitude.  

Take the angle between the two position vectors as θ.  In circular motion the velocity is perpendicular to the position vector; it follows that θ is
also the angle between the velocities.  The sides opposite the angle θ in the triangles are

Δ r = r f - ri = vave Δt and Δ v = v f - vi = aave Δt

ri

r f Δr=vaveΔt

θ vi
v f

Δv=aaveΔt

θ

Looking at  just  the  magnitudes  of  these vectors  we see a  pair  of  isosceles  triangles  and since the angle  is  the  same for  both,  we have similar
triangles.
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Comparing the ratios of similar sides of similar triangles gives

aave Δt

vave Δt
=

v

r
.

This can be rewritten as 

aave =
v vave

r
.

As Δ t → 0 the average velocity and average acceleration approach their  instantaneous values,  so the magnitudes of the average quantities
approach the instantaneous magnitudes.

vave → v and aave → a

With this we can write the value of the instantaneous acceleration as

ac =
v2

r
.

As Δ t → 0 it is also true that θ → 0.  It follows that the velocity and acceleration vectors are perpendicular.  The direction of the acceleration is
toward the center.  We will refer to this direction as centripetal and denote the centripetal acceleration as ac.

Many modern texts avoid the use of the term centripetal and have adopted the term radial instead. The radial direction could be outward or
inward and the term centripetal is unambiguously toward the center. The reason for avoiding the word centripetal is because students confuse it
with centrifugal. The centrifugal force is the outward false force associated with the centripetal acceleration.

Uniform Circular Motion - Period, Speed and Radius

For  uniform  circular  motion  we  can  relate  the  period,   speed  and  the  radius.   This  will  also  give  us  an  alternative  expression  for  the
centripetal acceleration in terms of the period.  The period T is defined as the time needed for each full revolution.

It is a simple matter to relate the period to the radius and speed.  Since the speed  is uniform, is the same as the average speed; this is the
distance traveled divided by the total time.  The distance traveled in one period is one circumference.  It follows that

v =
2 π r

T
.

Inserting this into our expression for the centripetal acceleration  ac = v2 r gives

ac =
2 π

T

2

r.

This will prove to be a useful expression.  The student should keep in mind that this only applies to uniform circular motion.

Example F.4 - Centripetal Acceleration at the Equator

The radius of the Earth is 6.38×106 m. What is the acceleration of a point on the equator?

Solution
Since the period of rotation of the Earth is 1 day, we can easily find ac.

r = RE = 6.38×106 m and T = 24×3600 s = 8640 s ⟹ ac =
2 π

T

2

r = 0.0337 ms2

Note that this is smaller than g but it is not negligible. When g is measured in free fall, the centrifugal contribution is included.
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General Circular Motion - Tangential Acceleration

Now consider the more general case of circular motion where we allow the speed to change.  Generally, the component of the acceleration
perpendicular to the motion is related to the change in direction and the component parallel to the direction of motion is related to the change in
speed.  

The component of the acceleration in the centripetal direction must be the same as in the uniform case.

ac =
v2

r
.

The tangential direction is the direction of the velocity. If the speed is changing then there is also a tangential component of the acceleration at. If
the speed is increasing the tangential component is positive at > 0 and if decreasing it is negative at < 0.

t
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u t

u c

v

a
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ac

decreasing speed ⟹ at< 0

General Two Dimensional Motion and the Effective Radius

Now we consider the most general  problem of motion in a plane.  Any trajectory may be approximated by a circle at  some position.  We
refer  to  the  radius  of  that  circle  as  the  effective  radius.   We  may  choose  centripetal  and  tangential  directions  as  before  and  apply  the  above
expression for the acceleration to the general two dimensional problem.  If the direction is not changing at some instant, then the effective radius
is infinite; the centripetal acceleration then becomes zero.
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F.5 - Dynamics of Circular Motion

Newton’s Second Law Fnet = ma  is the foundation of classical mechanics and, of course, it must still apply when we have circular motion.
We now have new formulas for the acceleration.  We will now consider examples with circular motion.

Examples with Uniform Circular Motion

Example F.5 - Block on a Rotating Disk

A block  sits  on  a  turntable  that  rotates  about  its  center  once  every  2.5 s.   If  the  coefficient  of  static  friction  is  0.28,  then  what  is  the
largest distance r that the block can be from the center without slipping? 

Solution
We know the period T = 2.5 s and the coefficient of static friction μs = 0.28.  We are not given the mass so it must cancel out in
the algebra; call the mass m.
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The only thing touching the block is the surface so we only have the two contact forces of a surface, friction (static here) and the
normal force.  Now we apply the second law to our perpendicular directions: the centripetal direction is horizontal and parallel
to the surface (c = hor = ∥) and vertical is perpendicular to the surface (ver = ⊥).

Fnet, c = m ac ⟹ fs = m ac

Fnet,ver = m aver = 0 ⟹ N = m g

From the period we can find the centripetal acceleration .

ac =
2 π

T

2

r

The static friction inequality and the expressions above give us the condition for not sliding.

fs ≤ μs N ⟹ m ac ≤ μs m g ⟹ ac ≤ μs g ⟹
2 π

T

2

r ≤ μs g

The maximum radius saturates this inequality.  Using μs = 0.28,  g = 9.80 ms2  and  T = 2.5 s gives our result.

2 π

T

2

rmax = μs g ⟹ rmax =
μs g

(2 π/T)2
= 0.434 m

Example F.6 - Rotating Vertical Cylinder in an Amusement Park

A common amusement park ride consists of vertical cylinder that rotates.  Initially, the riders stand on a floor and lean against the inside
surface of the cylinder as it starts to rotate.  When the rotation is sufficiently rapid, the floor is dropped out and the riders stay pinned
against the wall.  

To design such a ride you are given the radius of the cylinder R and an estimate of the smallest coefficient of static friction μs between a
person and the wall.  What is the minimum speed of the cylinder’s surface for the riders to stay safe and not slide?

Solution
As with the previous example, the only contact forces are due to the surface, but since here the surface is vertical the roles of the
normal force and friction are reversed.  
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Fnet, c = mac ⟹ N = mac

Fnet,ver = maver = 0 ⟹ fs = mg

fs ≤ μs N ⟹ mg ≤ μs mac ⟹ g ≤ μs ac ⟹ g ≤ μs
v2

R
When v = vmin we saturate the inequality and we get:

g = μs
vmin

2

R
⟹ vmin =

R g

μs

Nonuniform Examples

Example F.7 - Car at the Bottom of a Trough

A car of mass m drives with speed v at the bottom of a trough with an effective radius R.  What is the normal force of the road on the car?

R

v

Solution
The only contact force is the normal force of the road on the car,  which acts straight upward.  The acceleration is centripetal,
which here is upward.  Applying the second law in the centripetal direction gives an expression for the normal force.

N

m g

ac
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The only contact force is the normal force of the road on the car,  which acts straight upward.  The acceleration is centripetal,
which here is upward.  Applying the second law in the centripetal direction gives an expression for the normal force.

Fnet, c = mac ⟹ N - mg = m
v2

R
⟹ N = mg + m

v2

R

Example F.8 - Car at the Top of a Hill

A car of mass m drives at the top of a hill with an effective radius R.  What is the maximum speed the car can have while staying on the
road surface?

R

vmax=?

Solution

N

m g

ac

As  with  the  preceding  example  the  only  contact  force  is  the  upward  normal  force.   The  difference  is  that  the  centripetal
acceleration is now downward.  Applying the second law in the centripetal direction to get the normal force.

Fnet, c = mac ⟹ mg - N = m
v2

R
⟹ N = mg - m

v2

R
The normal force constraint inequality N ≥ 0 gives an inequality for the speed.  Saturating these inequalities gives the maximum
speed. At a higher speed the car flies off the road surface.

N ≥ 0 ⟹ v ≤ R g ⟹ vmax = R g

Example F.9 - Roller-Coaster Loop-to-Loop
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R
vmin=?

What is the minimum speed of a roller coaster cart at the top of a loop with an effective radius of R?

Solution

N
m g ac

The only contact force is the normal force of the roller coaster track on the cart, which acts straight downward.  The acceleration
is  centripetal,  which here is  also downward.   Applying the second law in the centripetal  direction gives  an expression for  the
normal force.

Fnet, c = mac ⟹ mg + N = m
v2

R
⟹ N = m

v2

R
- mg

The normal force constraint inequality N ≥ 0 gives an inequality for the speed.  Saturating these inequalities gives the minimum
speed.

N ≥ 0 ⟹ v ≥ R g ⟹ vmin = R g

Example F.10 - Ball Swung in Vertical Circle

A small ball of mass m is swung in a vertical circle at the end of a string of length L with a fixed end. What minimum speed is needed at
the top of the arc for the ball to not fall out of the circle.

L

vmin=?

Solution
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T
m g ac

The only  contact  force  is  the  tension  in  the  string,  which  acts  straight  down.   Note  that  this  problem is  identical  to  the  roller
coaster problem above but the tension plays the role of the normal force.

Fnet, c = mac ⟹ mg + T = m
v2

L
⟹ T = m

v2

L
- mg

The tension constraint inequality T ≥ 0 gives an inequality for the speed.  Saturating these inequalities gives the minimum speed.

T ≥ 0 ⟹ v ≥ L g ⟹ vmin = L g

Chapter F - Applications of Newton's Laws | 15


