
Chapter G

Work and Kinetic Energy
Blinn College - Physics 1401 - Terry Honan

G.1 - Introduction to Work

Mechanical Advantage

In Chapter D we considered the example of a pulley system lifting a weight.  We saw that using multiple pulleys one can lift a heavy object
with a smaller force.  In the example, a weight W could be lifted by a tension T = W /5, but the smaller force must act over a larger distance.  To
lift the weight by Δy one must pull on the rope by Δx = 5 Δy.  This suggests that force times distance is an important quantity; we will define it
as the work.

One Dimensional Work by a Constant Force

If in one dimension we move something by a displacement Δx with a constant force F.  We will define the work done in this case by

W = F Δx.

Note that even in one dimension force and displacement are vector quantities; a one dimensional vector is a real number and the sign gives its
direction.  It follows that if the force and displacement are in the same direction then the work is positive and if opposite it is negative.  The work
is a scalar quantity.

Units:  The SI unit for work and energy is:  J = joule = N m

Two and Three Dimensional Work by a Constant Force

We  now  need  to  generalize  this  to  the  case  of  a  constant  force  F  and  a  straight-line  path  in  two  or  three  dimensions.  Here  we  have  a
displacement d and we will define θ to be the angle between the two vectors  F and d.  What is important is the component of the force along the
direction of the displacement, which will be written F∥ and is given by F∥ = F cos θ.

The definition of work becomes

W = F∥ d = F d cos θ = F d∥

where d = d is the magnitude of the displacement d and d∥ is the component of d parallel to the force F.
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Example G.1 - Dragging a Crate

A 38-kg crate initially at rest is dragged by a rope a distance of  4m along a horizontal floor.  The rope has a tension of 115 N and makes
an angle of 35° from horizontal.  There is a backward friction force of 80 N acting on the crate.  There are four forces acting on the crate:
tension, friction, the normal force and gravity. 

(a) What is the work done by each force?

Solution

The  free-body  diagram  for  the  crate  shows  the  four  forces  and  their  directions.  The  displacement  Δr  is  shown  for  reference,
where Δr = Δx, but Δr is not a force and not part of the free-body diagram.
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T = 115N, f = 80N, m = 38kg, θ = 35 ° and d = 4m

Since we have constant forces with a straight-line path, we can write the work for each force as:

W = F d cos θ.

For the tension we have

WT = T d cos θ = 377. J

For the friction force the angle is θ = 180 °. 

Wf = f d cos 180 ° = - f d = -320 J

Both the normal force and gravity (the weight) are perpendicular to the displacement.  Since cos 90 ° = 0 both forces give zero
work. 

(b) Find the acceleration of the crate and its speed after moving 4m.

Solution
To  find  the  acceleration,  which  is  horizontal,  we  only  need  to  consider  the  horizontal  components  of  forces.   The  horizontal
component of the tension is Tcosθ and friction is backward and negative.

Fnet,hor = T cos θ - f = m a ⟹ a =
1

m
(T cos θ - f ) = 0.374

m

s2

Using constant acceleration kinematics and that the initial velocity is zero, v0 = 0, allows us to find the final speed.

v2 = v0
2 + 2 a Δx ⟹ v2 = v0

2 + 2 a d ⟹ v = 2 a d = 1.73 m /s
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G.2 - Work in General
So far we have the definition of work for a constant force and a straight line path to be W = F∥ d = F d cos θ = F d∥.  We need to generalize

this to a varying force acting on a general path that is allowed to curve. Break up the path into many small segments d
(i)

; the force at that small

segment F
(i)

 will be essentially constant if the segment is sufficiently small. The work over that small segment is then F∥
(i) d(i)  The generalized

definition of work will then be summing the work over all the small segments

W =
i

F∥
(i) d(i) small d

(i)


This expression will not be used in calculations this semester. It will be used for definitions.

F
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Constant Force

If a force is constant then F = F
(i)

 and them we can take it out of the above sum.  

W =
i

F∥
(i) d(i) =

i

F d∥
(i) = F 

i

d∥
(i) = F d∥ = F∥ d = F d cos θ small d

(i)


Here d is the displacement vector from the start of the path to its end: d = ∑i d
(i)

.
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d
(i)

d

This means the the work for constant force is the same as the work for a constant force over the straight-line path, where d  is the displacement
vector from the start to the end of the path.

Work Done by Gravity

An important special  case of the previous result  is  the work done by gravity.  The force F = -m g y  is  a constant and the component of a
displacement d in the direction of gravity is: d∥ = -Δy.

Wgrav = F d∥ = -m g Δy.

Example G.2 - A Box on a Table

Consider a box of mass m and a table of height h.

(a) What is the work done by gravity when the box is moved from the table top to the floor?

Solution
We choose positive y to be upward so we have Δy = -h. It follows that

Wgrav = -m g Δy = m g h.

(b) What is the work done by gravity when the box is moved from the floor back to the table top?

Solution
Now we have Δy = +h and

Wgrav = -m g Δy = -m g h.

(c) What is the total work done by gravity when the box is moved from the table top to the floor and then back to the table top?

Solution
 The net vertical displacement is zero. Δy = 0.  So

Wgrav = -m g Δy = 0.

One Dimensional Work by a Varying Force

If F(x) is a one dimension force as a function of position x, the work when moving from position xi to x f  is the area under the F vs. x graph
between xi and x f . The convention when discussing area under a curve is the when F(x) Δx is negative, the contribution to the area is negative.

4 | Chapter G - Work and Kinetic Energy



F

x
xi

x f

W is the area between xi and x f .
(Green is positive and red is negative.)

x x+Δx

W =FΔx

Work is the area under an F vs. x graph, where the contribution
to the area for negative F (x)Δx  is negative, as shown in red.    

Note that when x f < xi, then Δx < 0 and the sign of F(x) Δx is reversed; positive F then gives a negative area and negative F gives a positive area.

F

x

W is the area between xi and x f .
(Green is positive and red is negative.)

xi

x f

W <0

When xf < xi  the signs are reversed: positive forces do negative
work and negative forces do positive work.                                  

Example G.3 - Work Done by a Varying Force

A particle moves along the x-axis under the force represented by the graph below.

F (N)

x (m)
6 1810 12

30

7272

-144

(a) What is the work done by the force on the particle between 6 m and 30 m?

Solution
The mass of the particle is unimportant for this part of the problem; we will return to this example later and then the mass will
be needed. Work is the area under the F vs. x graph. To find the area, break it into segments.

W6→30 = W6→10 + W10→12 + W12→18 + W18→30
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F (N)

x (m)
6 1810 12

30

7272

-144

For this we have three triangles, where area = 1
2

base×height and a rectangle for W10→12. For the last triangle, since the force is
negative, the contribution to the area will be negative.

W6→10 =
1

2
(4 m×72 N) = 144 J

W10→12 = 2 m×72 N = 144 J

W12→18 =
1

2
(6 m×72 N) = 1216 J

W18→30 = -
1

2
(12 m×120 N) = -864 J

Summing these gives.

W6→30 = W6→10 + W10→12 + W12→18 + W18→30 = -360 J

Work Done by a Spring

In  chapter  6,  we discussed  Hooke’s  law,  the  force  law of  a  spring.  The  force  of  a  spring  acting  on  something  is  F = -k x.  We may now
obtain an expression for the work done by a spring. Apply the preceding discussion of the work done in one dimension by a varying force F(x)
using the Hooke's law  F(x) = -k x.

F

x

F=-kx

xi x f

F(xi) =-k xi

F(x f ) =-k x f

W <0

The  negative  area  between  xi  and  x f  is  just  the  negative  area  of  the  triangle  from  the  origin  to  x f  to  Fx f   subtracting  the  missing  part,  the
negative area of the triangle from he origin to xi to F(xi) 

Wspring =
1

2
x f F(x f ) -

1

2
xi F(xi) =

1

2
x f (-k x f ) -

1

2
xi (-k xi)

This gives the expression.

Wspring = -
1

2
k x f

2 - xi
2.

6 | Chapter G - Work and Kinetic Energy



Example G.4 - Hooke’s Law

It takes a force of magnitude 60 N to compress a spring by 4 cm. 

(a) What is the force constant of the spring?

Solution
F = 60 N and x = 0.04 m

We will use Hooke’s Law to find the force constant.  We will ignore the sign because only magnitudes are given.

F = k x ⟹ k = F /x = 1500 N /m.

(b) How much work is done compressing the spring?  What is the work done by the spring?

Solution
The work done by the spring is

Wspring = -
1

2
k x f

2 - xi
2 = -

1

2
k x2 - 02 = -

1

2
k x2 = -1.2 J .

G.3 - Power

Power, in the most general sense, is the rate that something uses or provides energy.

𝒫ave =
Energy

Δt
.

The power delivered by a motor or engine is the rate that it can do work

𝒫ave =
W

Δt
.

For the one-dimensional case we can write the work in terms of the force and velocity. For a small d = Δx, since v = Δx /Δt we get:

𝒫ave =
W

Δt
=

FΔx

Δt
= Fv

Units:  The SI unit for power is:  W = watt = J /s 

G.4 - Kinetic Energy and the Work-Energy Theorem

The Net Work

Newton's second law isn't a general statement about forces but is about the net force acting on a body,  Fnet = m a.  Fnet is the vector sum of
all forces acting on a body; we use a free-body diagram to help us sum these forces.  Let us symbolically write the net force in terms of all the
forces acting on a body (all the forces in the free-body diagram) as

Fnet = F1 + F2 + ....

Each force acting on a body does work on the body.  (Some of these works may be zero, however.)  If the work done by Fi is labeled Wi then we
can define the net work as the sum of all these works.

Wnet = W1 + W2 + ....
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The Work-Energy Theorem

The work-energy theorem is a very important result.  It is where the idea of energy comes into physics and it explains why work is a useful
notion.  We define the kinetic energy by

K =
1

2
m v2.

The theorem is quite simple to state; it equates the net work to the change in the kinetic energy.

Wnet = Δ K

where the change is kinetic energy is  Δ K = Kf - Ki =
1
2

m v f
2 - vi

2. 

Example G.5 - Dragging a Crate (continued)

Before discussing the theorem let us consider an example. We will continue the “Dragging a Crate” example. 

A 38-kg crate initially at rest is dragged by a rope a distance of  4m along a horizontal floor.  The rope has a tension of 115 N and makes
an angle of 35° from horizontal.  There is a backward friction force of 80 N acting on the crate.  There are four forces acting on the crate:
tension, friction, the normal force and gravity. 

In the earlier example we found the work done by each force

WT = 376.8 J , Wf = -320.0 J and WN = 0 = Wgrav

and we solved for the speed of the crate after moving.

(a) What is the net work?

Solution
Wnet = WT + Wf + WN + Wgrav = 376.8 J - 320.0 J + 0 + 0 = 56.8 J

(b) Using the Work-Energy theorem find the speed of the crate after moving 4m.

Solution

Wnet = ΔK =
1

2
m v f

2 - vi
2

Using m = 38 kg and vi = 0 we get the same value for the speed.

v f =
2

m
Wnet = 1.73 m /s

Understanding the Work-energy Theorem

Consider a single mass moving along a general path. The net work is the sum of the works done by each force acting on a body. Since the
sum of all  the forces is  the net  force,  the net  work becomes the work done by the net  force.  We can understand this  theorem using Newton’s
second law and considering a small displacement d. 

Wnet = Fnet,∥ d = m a∥ d =
m

2
×2 a∥ d
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Choose coordinates so that this small displacement is in the x-direction, then we can write d = Δx and a∥ = ax. For a small displacement, the force
is constant and then so is the acceleration. The kinematics equations for constant acceleration gives

2 a∥ d = 2 ax Δx = vx
2 - v0,x

2 = v f ,x
2 - vi,x

2 = v f
2 - vi

2

The  reason  for  the  final  equality  in  the  expression  is  that  at  that  instant  the  particle  is  moving  in  the  x-direction  only.  Inserting  this  into  the
previous result gives the Work-Energy theorem, at least for a small displacement.

Wnet =
m

2
v f

2 - vi
2 = ΔK

For motion along a general path, the net work will be the sum over the net work of each small segment making the path. Adding all the ΔK  for
each small displacement gives the total ΔK for the entire path. The work-energy theorem follows.

Wnet = ΔK

Example G.6 - Work Done by a Varying Force (continued)

A particle moves along the x-axis under the force represented by the graph below.

F (N)

x (m)
6 1810 12

30

7272

-144

(b) Suppose this is the only force acting on a 30.0-kg particle. If the particle has a speed of 7.00 m /s at x = 6 m, then what is its speed at
x = 30 m?

Solution
We are now also given the mass and the initial velocity.

m = 30.0 kg and vi = v(6 m) = 7.00 m /s

Since there is only one force acting, that force is the net force and its work is the net work. This is what we found in part (a). 

Wnet = W6→30 = -360 J

The work-energy theorem gives us the final velocity.

Wnet =
1

2
m v f

2 - vi
2 ⟹ v f

2 - vi
2 =

2 Wnet

m
⟹ v f = v(30 m) = vi

2 +
2 Wnet

m
= 5.00

m

s
Note that by the work-energy theorem, whenever the net work is negative the speed will decrease.
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