
Chapter H

Potential Energy and Energy Conservation
Blinn College - Physics 1401 - Terry Honan

H.1 - Conservative Forces and Potential Energy

When  a  body  is  moved  in  a  uniform  gravitational  field  g  the  work  done  by  gravity  is  given  by:  W = - m g Δ y  Note  that  if  the  body  is
moved along different paths with the same endpoints (starting and stopping points) the Δ y is the same and thus the work done by gravity is the
same. In stretching a spring the work of the spring W = - 1
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2  depends only on the endpoints xi and x f  and not on the details of the path.

We will define such forces (where the work is independent of path) as conservative and we will then be able to define a new type of energy,
called potential  energy  or  U,  for  these forces.  The entire  effect  of  the work of  these forces will  be incorporated into considering the potential
energy  functions  at  the  endpoints  of  the  paths.  Potential  energy  will  be  an  easy  and  useful  bookkeeping  tool  for  keeping  track  of  the  work
contributions for conservative forces in the work-energy theorem.

Conservative and Nonconservative Forces

A force is  defined to be a conservative force when its  work is  independent  of  the path taken;  for  any two paths with the same endpoints
W1 = W2. Equivalently, we can say that for a conservative force the work around any closed path (a path that ends where it begins) is zero. 
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Equivalent definitions of a conservative force: On the left, any two paths with the same 
endpoints will have the same work. On the right, the work for any closed path is zero.   

Conservative Examples
Examples of conservative forces have already been mentioned.  These are uniform gravitational forces and the elastic force of a spring.  Other
examples of conservative forces that will be encountered are nonuniform gravitational forces, which will be discussed later this semester, and the
electrostatic force, which will be considered in the second semester course.

Dissipative friction is nonconservative.
Consider an object being dragged along a horizontal floor by a horizontal rope.  If the dragging force is horizontal, the normal force is the weight
and the magnitude of the force of kinetic friction is fk = μk m g = constant.  The direction of the force of friction opposes the direction of motion
so the work done by friction for a small displacement d is - fk d, since cos180 ° = -1. For a long path, summing over all then small displacements
gives

Wf = - fk (path length)

Since it depends on the path length, it is clear that kinetic friction is not conservative.

Driving forces are nonconservative.
By driving forces we mean the force of a car's engine propelling a car or the force of a cyclist propelling a cycle.  Consider a car that begins at
some location, drives on some path and then returns to the same point.  The car's engine does work in this process and thus cannot be conserva-
tive.  A conservative force must give zero work for a closed path.



Other Nonconservative Forces
Any  force  that  is  not  conservative  is  nonconservative,  where  our  two  conservative  examples  are  gravity  or  the  elastic  force  of  a  spring.  If  a
tension force or normal force acts on a body then those also represent nonconservative forces; in some examples the tension and normal force
will be present but do no work. If there is some external applied force acting on a body then that is nonconservative.

Potential Energy

For any conservative force we can define a potential energy, U.  This idea is this: since the work depends only on the endpoints of a path
and not the details of the path then we can write the work as the difference of some function evaluated only at the endpoints.  We will define this
function as the negative of the potential energy function.  The reason for the sign will become clear later.  

The definition of potential energy is

Δ U = -W

The zero of potential energy is arbitrary.  In some cases there will be standard choices of the zero position.

Potential Energy for Uniform Gravity
Since for  gravity  we have W = -m g Δ y,  we define  gravitational  potential  energy by Δ U = m g Δ y.   We can choose the  zero of  potential

energy to be where y = 0 and then define the potential energy function as

U = m g y.

The zero of y is still arbitrary.

Elastic Potential Energy

The work done by a spring is given by W = - 1

2
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2 - xi
2.  When we take  Δ U = -W we get

Δ U = -W =
1

2
k x f

2 - xi
2.

We want to find a function U(x) that satisfies Δ U = Ux f  - U(xi).  The easiest choice is

U =
1

2
k x2.

In making this choice we take the zero position of potential energy to be the equilibrium position x = 0.

Work and Mechanical Energy

Let us now apply these ideas to the work-energy theorem.  We begin by writing all forces acting on a body as

Fnet = Fnc
all nonconservative

forces

+ F1 + F2 + ...
conservative forces

.

Fnc  represents  the sum of all  nonconservative forces.   The other  forces are the conservative forces listed separately.   We now make the same
decomposition of the corresponding works.

Wnet = Wnc + W1 + W2 + ...

Now we make the replacements  Wi = -Δ Ui.  Plugging the above expression for Wnet  into the work-energy theorem Wnet = Δ K  and moving the
Δ Ui terms to the right hand side gives:

Wnc = Δ K + Δ U1 + Δ U2 + ....

This result applies to a single mass.  To apply it to a system containing multiple masses, like for instance Atwood's machine, we can sum
this over every mass in the system.  Now take Wnc  to be the sum of the Wnc  for all the masses.  Call  Ktot  the sum of the kinetic energies of all
masses and Utot the sum over all the Ui for all the masses.  We end up with the result

Wnc = Δ Ktot + Δ Utot
= Δ Emech

where we have defined the total mechanical energy of the system as  Emech = Ktot + Utot.  Usually the mechanical energy will just be written as E.

Nonconservative forces will usually consist of friction forces, which remove mechanical energy from a system, and driving forces like the
work done by car's engine or a cyclist, which add mechanical energy.
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H.2 - Conservation of Energy

There are two notions of conservation of energy we will consider.  One will be of practical importance for problem solving.  The other is a
very fundamental notion.

Conservation of Mechanical Energy

The conservation of mechanical energy is a principle that will prove very useful in problem solving.  Begin with the fundamental expression
Wnc = Δ Emech.  If in some problem there are no nonconservative forces (i.e. no dissipative friction or driving force) then we can conclude that
Δ Emech = 0 or that

Emech,i = Emech, f or Ei = Ef .

To solve such a problem we need to find an expression for E, the total mechanical energy.  To do this we add a kinetic energy for each mass in
the problem, add in gravitational potential energies for each mass and add an elastic potential energy for each spring.

Energy as a Fundamentally Conserved Quantity

Energy is a fundamentally conserved quantity.  This means that it cannot be created or destroyed; we can just convert it from one form to
another.

Consider the mechanical energy of a car  Wnc = Δ Emech.  The mechanical energy is not conserved due to the Wnc of friction and the engine.
The energy lost to friction goes into heat.  The energy from the engine comes from the energy stored in the chemical bonds of the fuel.

When solving problems that involve nonconservative forces we can rewrite Wnc = Δ Emech = Ef - Ei as 

Ei + Wnc = Ef

Written this way, problem solving is more similar for both types of problems, where Wnc is zero or not.

Example H.1 - A Rolling Car

12 m21 m/s

A 1500kg car rolls in neutral up a 12m high hill. The car’s speed at the bottom of the hill is 21m /s.

(a) Suppose there is no friction. What is the speed of the car at the top of the hill?

Solution
m = 1500kg, h = 12m and vi = 21m /s.

For a car we have Wnc = Wfriction + Wengine but since it is in neutral Wengine = 0.  For part (a) we also have Wfriction = 0.

Since there is just one mass and no springs, the mechanical energy is E = 1
2

mv2 + mgy, and since Wnc = 0 mechanical energy is
conserved. It is most convenient to choose the lowest point to be the zero of potential energy so we take yi = 0 and y f = h.

E =
1

2
mv2 + mgy and Ei = Ef ⟹

1

2
mvi

2 + 0 =
1

2
mvf

2 + mgh

It follows that the speed at the top is

v f = vi
2 - 2gh = 14.3 m /s

(b) Suppose now that there is friction and the speed of the car at the top is 9.5m/s . What is the work done by friction?
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Solution
The car is still in neutral so we again have Wengine = 0. 

Wnc = Wfriction + Wengine = Wfriction + 0

Since  there  is  just  one  mass  and  no  springs,  the  mechanical  energy  is  E = 1
2

mv2 + mgy,  and  since  Wnc = Wfriction  mechanical
energy is conserved. 

E =
1

2
mv2 + mgy and Ei + Wnc = Ef ⟹

1

2
mvi

2 + 0 + Wfriction =
1

2
mvf

2 + mgh

We can now find Wfriction, which we expect to ��be negative.  v f = 9.5 m /s.

Wfriction =
1

2
mvf

2 + mgh -
1

2
mvi

2 = -86 700 J

Example H.2 - A Spring Gun

A ball of mass m is shot from a horizontal spring gun at a height h above the floor. The spring has a force constant k and is compressed
by x0 when cocked. What is the speed of the ball when it hits the floor?

Solution

There  is  just  one  mass  and  thus  one  kinetic  energy  term  K = 1
2

m v2.   There  are  two  potential  energy  terms  gravitational

Ugrav = mgy and elastic Uelastic =
1
2

k x2.  The total energy is thus:

E =
1

2
m v2 + mgy +

1

2
k x2.

Since there is no friction and no non-conservative energy source then Wnc = 0 and mechanical energy is conserved.  It is most
convenient to choose the lowest point to be the zero of potential energy so we take yi = h and y f = 0.  The initial and final values
of x, the compression of the spring from equilibrium are xi = x0 and x f = 0.

Ei = Ef ⟹ 0 + mgh +
1

2
kx0

2 =
1

2
mvf

2 + 0 + 0

Solving for the final velocity gives

v f =
k

m
x0

2 + 2gh .

Example H.3 - A Spring and a Block
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A 4-kg block is pushed along a (level) floor by a spring with a force constant of 800 N /m as shown.  Initially the spring is compressed
by 10 cm.  After leaving the spring the block slides an additional distance of 30 cm before coming to a stop.  What is the coefficient of
kinetic friction between the block and the floor.

Solution
We are given the mass, the force constant of the spring, the amount the spring was compressed initially and the distant is slides
after leaving the spring.

m = 4kg, k = 800 N /m, x0 = 0.10 m and d = 0.30 m

Since the floor is level we can set y = 0 and omit the gravitational potential energy.  This leaves just kinetic energy and elastic
potential energy.

E =
1

2
m v2 +

1

2
k x2

Because there is friction we have Wnc = Wfriction.  The normal force on the block is just its weight, N = mg.  The total distance
the block slides is Δx = x0 + d = 0.40 m.

Wnc = Wfriction = - fk Δx = -μk N Δx = -μk mg (x0 + d)

Note that the sign above follows from cos180 ° = -1.  Both initial and final velocities are zero, vi = 0 = v f .  We also have xi = x0
and x f = 0.

Ei + Wnc = Ef ⟹ 0 +
1

2
kx0

2 - μk mg (x0 + d) = 0 + 0

Solving for the coefficient of kinetic friction we get

μk =
k x0

2

2 mg (x0 + d)
= 0.255 .

Example H.4 - Two Connected Masses

m1

m2

h

Initial

m1

m2h

Final

Two blocks of masses m1 and m2 are connected by a light string over an ideal pulley as shown.  m1slides on a horizontal table and m2 is
initially a height h above the floor.

(a) Suppose there is no friction between m1 and the table. What is the speed of m2 when it hits the floor?

Solution
We have potential energies of U = m1gy1and U = m2gy2 for the two masses.  We can choose our zero value for y differently for
each mass.  Let us choose y1 = 0 along the tabletop; this removes that potential energy term completely.  For the hanging mass
choose its lowest point to be the zero.  So, y2 = h initially and y2 = 0 at the floor.  Both masses have kinetic energies.  Because
of  our  simple  pulley  arrangement  both  masses  move  the  same distances,  Δx1 = Δx2 = Δx,  and  thus  will  have  the  same speed:
v = v1 = v2.  The total kinetic energy becomes
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We have potential energies of U = m1gy1and U = m2gy2 for the two masses.  We can choose our zero value for y differently for
each mass.  Let us choose y1 = 0 along the tabletop; this removes that potential energy term completely.  For the hanging mass
choose its lowest point to be the zero.  So, y2 = h initially and y2 = 0 at the floor.  Both masses have kinetic energies.  Because
of  our  simple  pulley  arrangement  both  masses  move  the  same distances,  Δx1 = Δx2 = Δx,  and  thus  will  have  the  same speed:
v = v1 = v2.  The total kinetic energy becomes

K =
1

2
m1 v1

2 +
1

2
m2 v2

2 =
1

2
m1 v2 +

1

2
m2 v2 =

1

2
(m1 + m2) v2

and the total mechanical energy is

E =
1

2
(m1 + m2) v2 + m2gy2

Since there is no friction for part (a) we have Wnc = 0 and then conservation of mechanical energy.

Ei = Ef ⟹ 0 + m2gh =
1

2
(m1 + m2) v f

2 + 0

The final speed follows.

v f = 2
m2 g

m1 + m2
h

The expression was written so that  the part  inside the brackets  is  just  the linear  acceleration that  we could have found with a
more involved force analysis in Chapter D.

(b) Suppose now that there is a coefficient of kinetic friction μk between m1 and the table. What is the speed of m2 when it hits the floor?

Solution
Now that we have friction mechanical energy is  no longer conserved. Wnc is just the work done by friction.

Wnc = Wfriction = - fk Δx = -(μk N) Δx = -(μk m1 g) h

We can then write

Ei + Wnc = Ef ⟹ (0 + m2gh) - μk m1 g h =
1

2
(m1 + m2) v f

2 + 0

Solving for v f  with the acceleration again in brackets gives

v f = 2
m2 g - μk m1 g

m1 + m2
h
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