
Chapter I

Linear Momentum
Blinn College - Physics 1401 - Terry Honan

I.1 - Momentum and Newton’s Second Law

Definition of Momentum

So far we have written the second law in terms of the acceleration of a particle.  It turns out that Newton wrote it differently; his preferred
form of the second law was written in terms of the time rate of change of the momentum of the body.

Momentum is a vector quantity describing the dynamics of a moving body.  It is defined simply as the mass times the velocity and we use
the symbol p to denote it.

p = m v

We will often refer to this as linear momentum; this will distinguish it from angular momentum which will be discussed later.

The Second Law

Newton’s second law can be written in terms of the momentum. If the mass of a body is constant then Δp = m v f - vi = m Δv and we can
write

Δ p

Δt
= m

Δ v

Δt
= m aave ⟹ Fnet,ave =

Δ p

Δt
and Fnet = lim

Δ t→0

Δ p

Δ t

This  form  of  the  second  law  was  Newton’s  preferred  way  to  write  it.  Although  this  is  equivalent  to  the  Fnet = m a  form  when  the  mass  is
constant, when the mass is changing this new momentum form is the proper one.

I.2 - Impulse and Momentum

Impulse and Average Force

Collisions are usually quick things but they are not instantaneous.  When a bat hits a baseball,  the ball rides along the bat for a period of
time.  An impulsive force is a large force acting over a short period of time.  We will define the impulse as the area under the force versus time
graph.  Suppose there is a collision between ti  and t f  the force is zero other than in that time interval; the x-component of the impulse Ix  is the
area under the graph of Fx vs. time between ti and t f .



The average force is defined as the impulse divided by the time Δt, where the width of the interval is Δ t = t f - ti. It follows that the area under
the force Fx versus time curve is also the area of the rectangle with Δt at its base and with a height of Fave,x

I

= Fave Δt and Ix = Fave,x Δt = (Area under Fx vs. t)

The Impulse-Momentum Theorem

The impulse-momentum theorem is an immediate consequence of Newton's second law.  

I


net = Δ p

Here the net impulse I


net is the impulse of the net force Fnet and the change in the momentum can be written Δ p = m v f - vi. Usually, the “net”
subscript  is  omitted  when  writing  the  impulse-momentum  theorem.  The  physical  significance  of  this  is  when  there  is  an  impulsive  force,  it
typically is much larger than any other forces acting over the short time of the collision and the other forces can be neglected. For example, when
a bat hits a baseball, that force is much larger than gravity or some other force during the collision.

Example I.1 - Hitting a Baseball

A 0.145 kg baseball thrown at 40 m /s is hit straight back at the pitcher at 50 m /s.  If the bat is in contact with the ball for 0.035 s, then
what is the average force of the bat on the ball?

Solution
As a vector the impulse-momentum theorem in one dimension becomes:

Fave Δ t = I = Δ p = m (v f - vi).

Remembering  that  a  one-dimensional  vector  is  a  real  number,  where  the  sign  gives  the  direction  we  can  write  the  given
information as:

m = 0.145 kg, vi = -40 m /s, v f = 50 m /s and Δt = 0.035 s .

Because the ball changes direction, one of the velocities must be negative.  If we choose the direction of the force of the bat on
the ball to be positive then that makes the initial velocity negative.  Solve for the average force.

Fave =
m

Δ t
(v f - vi) = 373 N

I.3 - A System of Particles

Introduction

So far our discussion of dynamics has applied only to point particles.  When we discussed the dynamics of extended objects we treated them
as particles.  Why was this proper?  In all the examples considered the body was not rotating, so each point on it had the same acceleration.  This
allowed us to treat it as a particle.  If a body rotates then different points have different accelerations and we must be more careful.  We can treat
it as a system of particles.

A system is a collection of point particles.  This could represent a huge number of particles, like every atom in a solid or fluid or it could be
a small number like the earth, moon and sun.  We arbitrarily divide the world into a system and everything else.  We then break up the forces
into internal forces, which are between particles of our system and external force between particles of our system and outside.

Center of Mass
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m2

m3

rcm

We will now define the center of mass of a system of particles as a weighted average of the positions.  Consider the system to be a discrete
distribution, that is a collection of point masses, which consist of masses m1 at postion vector r1,  m2 at r2, etc.  The total mass of our system is
M:

M = m1 + m2 + ...

We define the position vector of the center of mass by

rcm =
1

M
(m1 r1 + m2 r2 + ...)

Note that the position vectors ri  point from the origin of our coordinate system to the mass mi.  Since the x component of the position vector is
just x, the x component of the center of mass is just

xcm =
1

M
(m1 x1 + m2 x2 + ...)

where the y and z components satisfy similar expressions.

Because of how the instantaneous velocity is related to the position vector and how the instantaneous acceleration is related to the velocity,
we can write similar expressions for the velocity and acceleration of the center of mass.

vcm =
1

M
(m1 v1 + m2 v2 + ...) and acm =

1

M
(m1 a1 + m2 a2 + ...)

Example I.2 - The Earth-Moon System

The masses of both the earth and moon and the earth-moon distance are given by

ME = 5.97×1024 kg, MM = 7.35×1022 kg and REM = 3.85×108 m .
Where is the center of mass of the earth-moon system?  Give its distance from the center of the earth.

Solution

The center of mass must be along the line between the two centers. Take the origin to be at the center of the earth with the x-axis
directed toward the moon.

xcm = ME xE+MM xM

ME+MM
= ME 0+MM REM

ME+MM
= MM

ME+MM
REM

= 0.0122 REM = 4.68×106 m
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Compare this to the earth’s radius,  RE = 6.38×106 m.  The center of mass is below the earth’s surface.

A Three Particle System

F1
ext

F2
ext F3

ext

F12

F21

F13

F31

F23

F32

m1

m2

m3

Consider a three particle system with masses m1,  m2 and m3.  For the forces on m1can be written as a sum of internal forces F12  and F13

and external forces F1
ext

, representing everything outside our system acting on m1.  The forces for m2 and m3 break up similarly giving

Fnet,1 = F1
ext

+ F12 + F13 = lim
Δt→0

Δ p1

Δt
= m1 a1

Fnet,2 = F2
ext

+ F21 + F23 = lim
Δt→0

Δ p2

Δt
= m2 a2

Fnet,3 = F3
ext

+ F31 + F32 = lim
Δt→0

Δ p3

Δt
= m3 a3.

To concentrate on the bulk motion of our system we sum over these expressions.  The crucial point is that the internal forces cancel by Newton's
third law.  F12 + F21 = 0,  F13 + F31 = 0  and  F23 + F32 = 0.

F1
ext

+ F2
ext

+ F3
ext

= lim
Δt→0

Δ(p1 + p2 + p3)

Δt
= m1 a1 + m2 a2 + m3 a3

The General System

For a general system we define Fnet
ext

 as the net force

Fnet
ext

= F1
ext

+ F2
ext

+ ...

ptot as the total momentum and M as the total mass

ptot = p1 + p2 + ...

M = m1 + m2 + ...

Taking two derivatives of our definition of the center of mass,  M rcm = m1 r1 + m2 r2 + ...,  gives: 

M acm = m1 a1 + m2 a2 + ...,

since the second derivative of the position vector r is the acceleration a.  With this we get the two expressions for the second law for a system of
particles. 

Fnet
ext

= lim
Δt→0

Δ ptot

Δt
or Fnet,ave

ext
=

Δ ptot

Δt

Fnet
ext

= M acm

Suppose a uniform stick is thrown so that it has both translational and rotational motion. The net external force acting on it is Fnet
ext

= M g,  The
second expression above implies that acm = g, so the stick’s center of mass will follow the parabolic path of a projectile while the stick rotates
about that path.
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Suppose a uniform stick is thrown so that it has both translational and rotational motion. The net external force acting on it is Fnet
ext

= M g,  The
second expression above implies that acm = g, so the stick’s center of mass will follow the parabolic path of a projectile while the stick rotates
about that path.

A stick thrown with both translational and rotational motion. The center of mass follows the 
arc of a projectile while the stick rotates about that.                                                                

Conservation of Linear Momentum

The conservation of momentum is a consequence of the momentum form of the second law for a system.

Fnet
ext

= lim
Δt→0

Δ ptot

Δt
If there are no external forces acting on a system them the total momentum of the system is conserved.

Fnet
ext

= 0 ⟹ Δ ptot = 0

This is the second fundamentally conserved quantities encountered in our course.  To see how this is fundamental, imagine enlarging the system
to  include everything; there is then, by definition, no external force and thus the total momentum is conserved.

The  conservation  is  also  true  component  by  component.   If  there  is  no  external  force  in  some  direction,  say  the  x  direction,  then  the  x
component of the total momentum is conserved.

Fnet,x
ext = 0 ⟹ Δ ptot,x = 0

Example I.3 - Throwing and Catching a Ball on Frictionless Ice

We will consider a man of mass M, initially at rest on perfectly frictionless ice.

(a) Suppose the man throws a ball of mass m forward at speed v. What is his recoil speed, V?  
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Solution
The man will recoil backward and his final velocity is negative, -V , where V is the speed. All velocities are horizontal here so
we will take this to be a purely one-dimensional problem.  We take the system to be the man and the ball, so there is no external
force and the total momentum is conserved.  We can then solve for the recoil speed.

Fnet
ext = 0 ⟹ Δptot = 0 ⟹ ptot,i = ptot, f ⟹ 0 = M (-V) + m v ⟹ V =

m

M
v

(b) Suppose now that the man, still at rest initially, catches a ball of mass m thrown toward him.  What is the final velocity of both the
man and ball after the catch.

Solution
Again,  we take this  to be a purely one-dimensional  problem and there is  no external  force on the man-ball  system.  The total
momentum is still conserved.  The final momentum will use the combined mass of M + m.  

Fnet
ext = 0 ⟹ Δptot = 0 ⟹ ptot,i = ptot, f ⟹ 0 + m v = (M + m) V ⟹ V =

m

M + m
v

(c) Now consider the two-dimensional modification of part (a) where the ball is thrown at an angle θ above vertical at speed v.  Find the
recoil speed, V.

Solution
To  conserve  momentum  the  man  would  need  to  recoil  opposite  the  ball’s  velocity  into  the  ice.   Clearly  this  cannot  happen
because of the normal force of the ice on the man.  The normal force is a net external force.  Since there is no friction there is no
horizontal net force, Fnet,x = 0, so the horizontal component of the total momentum is conserved.  The horizontal component of
the ball’s velocity is vx = v cosθ.

Fnet,x
ext = 0 ⟹ Δptot,x = 0 ⟹ ptot,x,i = ptot,x, f ⟹ 0 = M (-V) + m v cosθ ⟹ V =

m

M
v cosθ

Symmetries and Conservation Laws - Noether's Theorem

It is a very deep and fundamental matter that symmetries give rise to conserved quantities.  This result is known as Noether's theorem.  The
mathematician Amalie Noether demonstrated around 1920 that to every symmetry there is a conservation law.  For example, the invariance or
symmetry  of  the  laws  of  physics  under  time  translations,  that  the  laws  are  the  same  now as  a  few minutes  from now,  implies  that  there  is  a
conserved quantity; this is energy!  The symmetry that the laws of physics are invariant under spatial translations implies a conserved quantity,
in this case linear momentum.  Rotational symmetry implies conservation of angular momentum.
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I.4 - Two-Body Collisions

Introduction

We now consider two-body collisions as a special case of our more general discussion.  If there are no external forces act while two bodies
collide, then the total momentum of the two-body system is conserved.  Even if there are external forces, often we can neglect them and consider
momentum conserved.  Consider a mid-air collision between two bodies.  Gravity acts as an external force during the collision but usually, to a
good approximation, the collision is so fast that the large impulsive internal forces dominate the gravity force and gravity can be neglected.  We
can equate the total momentum just before and just after the collision.

Momentum Conservation

Interactive Figure

Mass  m1  moving  at  v1i  collides  with  mass  m2  moving  at  v2i.   After  the  collision  the  velocities  are  v1 f  and   v2 f .   The  conservation  of
momentum for a two-body collision has the form

m1 v1i + m2 v2i = m1 v1 f + m2 v2 f .

The left-hand side is the total initial momentum and the right hand side is the total final momentum.

In the case of a one dimensional collision then the above expression applies but we may omit the vector arrows.  In one dimension a vector
is a real number and the sign gives the direction.  The vector nature of momentum and velocity is reflected in their signs.

Interactive Figure

Elastic Collisions - Kinetic Energy Conservation

Typically energy is lost in a collision.  Often to a reasonable approximation we can consider conservation of energy.  The relevant energy is
kinetic.
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1

2
m1 v1i

2 +
1

2
m2 v2i

2 =
1

2
m1 v1 f

2 +
1

2
m2 v2 f

2 (elastic)

In other words

Ktot,i = Ktot, f . (elastic)

Inelastic and Totally Inelastic Collisions

When we say a collision is inelastic we mean merely that it is not elastic.

Ktot,i ≠ Ktot, f (inelastic)

The extreme case of an inelastic collision is  called totally inelastic.   The most energy that  can be lost  in a collision is  when the two colliding
objects stick together. This means that the two objects have the same final velocity.

v1 f = v2 f = v f (totally inelastic)

The conservation of momentum formula then has the simple form:

m1 v1i + m2 v2i = (m1 + m2) v f . (totally inelastic)

Example I.4 - A Projectile embeds in a Block

(a)  A projectile with a mass of 0.30 kg moving in the y-direction at  40 m /s collides with and embeds in a 5.0-kg mass moving in the
negative x-direction at 2.0 m /s.  What is the combined final velocity of the block and projectile after the collision?

Solution

m1 = 0.30 kg, m2 = 5.0 kg, v1i = 〈0, 40〉 m /s, v2i = 〈-2.0, 0〉 m /s

This is a totally inelastic collision.  We can solve for the final velocity.

m1 v1i + m2 v2i = (m1 + m2) v f ⟹ v f =
m1 v1i + m2 v2i

m1 + m2
= 〈-1.89, 2.26〉 m /s

(b) A one-dimensional version of the previous problem follows:  A projectile with a mass of 0.30 kg moving in the x-direction at 40 m /s
collides with and embeds in a 5.0-kg mass moving in the negative x-direction at  2.0 m /s.   What is  the combined final  velocity of  the
block and projectile after the collision?

Solution
One-dimensional vectors are real numbers where the sign gives the direction.  We must be careful with signs.

m1 = 0.30 kg, m2 = 5.0 kg, v1i = 40 m /s, v2i = -2.0 m /s
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We can similarly solve for the final velocity.

m1 v1i + m2 v2i = (m1 + m2) v f ⟹ v f =
m1 v1i + m2 v2i

m1 + m2
= +0.377 m /s

Example I.5 - A Bullet Passes through a Block

A  17.5-gram  bullet  moving  at  355 m /s  passes  through  an  initially  stationary  1.55-kg  block.  If  the  bullet  passes  exits  the  block  at
125 m /s, then what is the final velocity of the block?

Solution
The  bullet’s  mass  must  be  converted  to  kilograms.  We  are  given  the  initial  and  final  velocities  of  the  bullet  and  the  initial
velocity of the block is zero. The final velocity of the block is the only unknown in the momentum conservation equation and
we can then solve for it. 

m1 = 0.0175 kg , v1i = 355 m /s , v1 f = 125 m /s , m2 = 1.55 kg , v2i = 0 , v2 f = ?

This is a one-dimensional problem.

m1 v1i + m2 v2i = m1 v1 f + m2 v2 f ⟹ m1 v1i + 0 = m1 v1 f + m2 v2 f ⟹ v2 f =
m1

m2
(v1i - v1 f ) = 2.60 m /s

One Dimensional Elastic Collisions

For the case of a one dimensional elastic collision we can solve for the final velocities in terms of the initial velocities and the masses.

m1 v1i + m2 v2i = m1 v1 f + m2 v2 f (momentum eq.)

1

2
m1 v1i

2 +
1

2
m2 v2i

2 =
1

2
m1 v1 f

2 +
1

2
m2 v2 f

2 (energy eq.)

Given the two initial velocities and the masses, we can solve for the final velocities. This algebra is awkward, so the solutions will be given.

vi f =
m1 - m2

m1 + m2
v1i +

2 m2

m1 + m2
v2i and v2 f =

2 m1

m1 + m2
v1i +

m2 - m

m1 + m2
v2i

Example I.6 - One-Dimensional Elastic Collision

A car rolls at speed v toward a truck with twice the car’s mass rolling in the opposite direction at the same speed.  The collision is elastic
and head-on, so that both vehicles stay on the same line.  What are both final velocities?

Solution
We must write our answers in terms of the speed v.  Since the car  and truck are moving in opposite directions their  velocities
must have opposite signs.  We will take the car’s direction as positive.  Take m as the mass of the car, so the track has mass 2m.
Since m is not given the answer cannot depend on it; we will see is cancels.

m1 = m, m2 = 2m, v1i = v, v2i = -v

This is now a straight-forward application of the solutions given above.

vi f =
m1 - m2

m1 + m2
v1i +

2 m2

m1 + m2
v2i =

m - 2 m

3 m
v +

4 m

3 m
(-v) = -

1

3
v -

4

3
v = -

5

3
v

v2 f =
2 m1

m1 + m2
v1i +

m2 - m

m1 + m2
v2i =

2 m

3 m
v1i +

2 m - m

3 m
(-v) =

2

3
v -

1

3
v =

1

3
v
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I.5 - Rocket Propulsion

When moving with respect to a medium one can propel something forward by pushing backward.  To walk, you push backward in the floor
and the floor then pushes forward on you.  A boat pushes backward on the water and the water pushes forward in it. A plane or jet propels itself
similarly by pushing backward on the air.  This leads to an obvious question for rocket propulsion. How does a rocket propel itself forward in the
vacuum of space? The answer is that the rocket throws part of itself, its spent fuel, backward and thus propels the rest of the rocket forward.  The
mass change of a rocket is an essential part of its propulsion.

Consider a rocket of mass m moving with a velocity v. The rocket propels itself forward by shooting spent fuel backward at a speed of ve,
the exhaust speed, relative to the rocket. In doing this the mass of the rocket changes. The (positive) mass of ejected fuel is Δm.  Ejecting the
fuel  backward  makes  the  rocket  recoil  forward  with  a  small  Δv.   Looking  at  conservation  of  momentum  in  the  frame  where  the  rocket  was
initially at rest gives

0 = m Δv - ve Δm ⟹ Δv = ve
Δm

m
The force propelling a rocket forward due to this expelled fuel is known as the thrust. From the momentum form of the second law the force on
the expelled fuel is

F =
Δp

Δt
= ve

Δm

Δt
By Newton’s third law, the thrust, the forward force on the rocket is

thrust = ve
Δm

Δt
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