
Chapter J

Rotational Kinematics and Energy
Blinn College - Physics 1401 - Terry Honan

J.1 - Kinematics of Rotations about a Fixed Axis

Rigid Bodies and Rotations in General

The distance between any two positions in a rigid body is fixed.  A book can be viewed as a rigid body as long as it is kept closed; when it
is opened then the distance between a point on the back cover and a point on the front cover varies and it is not rigid.

A rotation is described by an axis and an angle.  An axis is a line.  The axis of rotation of a door is its hinge.  The axis of a tire is its axle.
Often in a planar diagram we will draw an axis as a point.  The axis is then the line perpendicular to that plane through the point.  A rotation is
about some axis and by some angle.  Note that when a rigid body rotates different points move different distances.  The distance a point moves s
is  proportional  to the (perpendicular)  distance from the axis  r,  but  the ratio s /r  is  the same for any two points.   This ratio is  just  the angle of
rotation in radians.
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Kinematical Variables

To understand rotational kinematics it is essential to appreciate the analogy to one dimensional kinematics.  Recall that a one dimensional
vector  is  a  real  number  and  that  its  direction  is  given  by  its  sign.   The  rotational  analog  of  the  position  is  the  angle  of  rotation.   The  other
kinematical variables follow:

One Dimensional
LinearMotion

Rotations about
a Fixed Axes

Position x (m) θ (angle in rad)
Velocity v (m /s) ω (angular velocity in rad /s)
Average vave = Δ x

Δ t
ωave = Δ θ

Δ t

Instantaneous v = limΔ t→0
Δx
Δt

ω = limΔ t→0
Δθ
Δt

Acceleration a ms2 α angular acceleration in rads2

Average aave = Δ v
Δ t

αave = Δω
Δ t

Instantaneous a = limΔ t→0
Δv
Δt

α = limΔ t→0
Δω
Δt



Constant  Angular Acceleration

Since the rotational variables θ, ω and α are interrelated the same as x, v and a, we can find expressions for constant angular acceleration.  

One Dimensional
LinearMotion

Rotations about
a Fixed Axes

v = v0 + a t

Δ x = 1
2
(v0 + v) t

Δ x = v0 t + 1
2

a t2

v2 = v0
2 + 2 a Δ x

ω = ω0 + α t

Δ θ = 1
2
(ω0 + ω) t

Δ θ = ω0 t + 1
2
α t2

ω2 = ω0
2 + 2 α Δ θ

Example J.1 - Decelerating Ceiling Fan

In 8 s, a ceiling fan slows uniformly from 20 rev /min to 8 rev /min.

(a) What is the angular acceleration of the fan?

Solution
We need to convert our angular velocities, the rates of rotation, from rev /min to rad /s.

ω0 = 20
rev

min
×

2 π rad

rev
×

1 min

60 s
= 2.0944

rad

s

ω = 8
rev

min
×

2 π rad

rev
×

1 min

60 s
= 0.83776

rad

s
We also know t = 8 s and we are looking for α.  Use the first equation for constant angular acceleration:  ω = ω0 + α t.

ω = ω0 + α t ⟹ α=
ω - ω0

t
= -0.157

rad

s2

(b) How many times did the fan rotate while slowing?

Solution
The number of rotations is related to the rotation angle Δθ.

 of rotations =
Δθ

2 π
We can use any constant angular acceleration equation that involves Δθ to find this, since we have already found α. To find the
answer without reference to the α found in part (a) we will use the second equation.

Δ θ =
1

2
(ω0 + ω) t = 11.729 rad ⟹

Δθ

2 π
= 1.87

Relation Between Linear and Rotational Variables

In  chapter  6  we  described  circular  motion  in  terms  of  centripetal  and  tangential  directions,  where  the  centripetal  direction  is  toward  the
center  of  the circle  and the tangential  direction is  in  the direction of  motion,  meaning the direction of  the velocity.  A point  on a  rigid body a
distance r from the center moves in a circle of radius r, so that discussion is relevant here.

The velocity  is  purely tangential,  where vt  is  just  the  speed,  which is  just  vt = limΔt→0
Δs
Δt

 where Δs  is  the  small  arc  length traveled in  the
small time Δt. An angle in radians is defined as the arc length per unit radius, θ = s /r. It follows that the small arc length Δs is related to small
angle Δθ by  Δs = r Δθ.  Since ω = limΔ t→0

Δθ
Δt

, we get

vt = lim
Δ t→0

Δs

Δt
= lim

Δ t→0

r Δθ

Δt
= r lim

Δ t→0

Δθ

Δt
= r ω
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In chapter 6 we saw the acceleration had a centripetal component ac  and a tangential component that depended on the change in the speed. The
centripetal component ac can be written in terms of the radius r and the angular velocity ω.

ac =
v2

r
=

(r ω)2

r
= ω2 r

The tangential component at can similarly be written in terms of the radius r and the angular acceleration α.

at = lim
Δ t→0

Δvt

Δt
= lim

Δ t→0

Δ(r ω)

Δt
= r lim

Δ t→0

Δω

Δt
= r α.

The  tangential  and  centripetal  directions  are  perpendicular.  It  follows  that  the  magnitude  of  the  acceleration  can  be  found  by  applying  the
Pythagorean theorem to the perpendicular components ac and at.

a = ac
2 + at

2

Example J.2 - Decelerating Ceiling Fan (continued)

(c) While the fan is slowing there is an instant when  ω = 0.85 rad /s. At that instant, what are the tangential velocity and the magnitude
of the acceleration of the tip of the fan, 0.90 m from the axis.

Solution

ω = 0.85 rad /s , r = 0.90 m and α = -0.157
rad

s2
(from part (a))

We can solve for the tangential velocity.

vt = r ω = 0.765 m /s

To find the magnitude of the acceleration we use the Pythagorean theorem with the perpendicular components ac and at.

ac = ω2 r = 0.65025
m

s2
and at = r α = -0.14137

m

s2
⟹ a = ac

2 + at
2 = 0.665

m

s2

J.2 - Dynamics of Rigid Bodies Rotating about an Axis

Summary and Analogy with One Dimensional Motion

One Dimensional
LinearMotion

Rotations about
a Fixed Axes

Kinematics x, v, a θ, ω, α
Force F τ (torque)
Inertia m I (moment of inertia)

Momentum p = m v L = I ω (angular momentum)
Second

Law
Fnet = m a

Fnet = limΔt→0
Δp
Δt

τnet = I α
τnet = limΔt→0

ΔL
Δt

Conservation
of Momentum

Fnet
ext = 0

⟹ Δ ptot = 0
τnet

ext = 0
⟹ Δ Ltot = 0

Kinetic Energy K = 1
2

m v2 K = 1
2

I ω2

Work W = F Δx W = τ Δθ
Work–Energy Theorem Wnet = Δ K Wnet = Δ K

Power 𝒫ave = W
Δt

= F v 𝒫ave = W
Δt

= τ ω

This table is an extension of the preceding tables for kinematics.  Now we consider dynamics.  Dynamical quantities are things like force
and mass.  The rotational analog of force is called torque and the rotational analog of mass is the moment of inertia.  These two quantities are
undefined in the table; their definitions follow.  For all the other quantities, the above table serves as the definitions of the variables.
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Kinetic Energy and the Definition of the Moment of Inertia

m1

m2

m3

mir1 r2
r3

ri

ω

v1= r1ω
v2= r2ω

v3= r3ω

vi= riω

Axis

Consider a rigid body consisting of point masses mi.  The perpendicular distance from the axis to the ith mass is ri.  If the rigid  body  rotates
with angular velocity ω then the speed of the ith mass is

vi = ri ω.

The total kinetic energy is the sum of  the kinetic energies of all the masses.  Using the above expression for the speed we get

K =
1

2
 m1 v1

2 + m2 v2
2 +… =

1

2
m1 r1

2 ω2 + m2 r2
2 ω2 +… =

1

2
m1 r1

2 + m2 r2
2 +… ω2.

Using our desired expression for the kinetic energy  K = 1
2

I ω2 we get the expression for I moment of inertia for a rigid body about some axis.

I = m1 r1
2 + m2 r2

2 +…=m r2

This expression is for a discrete distribution; this means that the distribution is a collection of point masses.

Moment of Inertia

The moment of inertia is a property of a rigid body and an axis. The further the mass is from the axis, the larger the moment.

I = m1 r1
2 + m2 r2

2 +…=m r2

Example J.3 - A Discrete Distribution

Three masses are attached to a light board (of negligible mass). A m1 = 3 kg mass is at (-2 m, 4 m), a m2 = 5 kg mass is at (0, -3 m) and
a m3 = 2 kg mass is at (4 m, 0).

x

y

-2 m 4 m

-3 m

4 m
m1

m2

m3

(a) What is the moment of inertia about the y-axis?

Solution

The moment of inertia is I = ∑m r2, where the perpendicular distance from the y-axis is x,

I = m1 x1
2 + m2 x2

2 + m3 x3
2 = 3 kg (-2 m)2 + 5 kg 02 + 2 kg (4 m)2 = 44 kg m2
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(b) What is the moment of inertia about the x-axis?

Solution
The perpendicular distance from the x-axis is y,

I = m1 y1
2 + m2 y2

2 + m3 y3
2 = 3 kg (-4 m)2 + 5 kg (-3 m)2 + 2 kg 02 = 93 kg m2

(c) Suppose this rotates about the origin at 3 rad /s. What is its kinetic energy?

Solution

We first need to fine the moment of inertia about the origin and then use K = 1
2

I ω2. The perpendicular distance from the origin

is r = x2 + y2 .

I = m1 x1
2 + y1

2 + m2x2
2 + y2

2 + m3x2
2 + y2

2

= 3 kg (-2 m)2 + (-4 m)2 + 5 kg 02 + (-3 m)2 + 2 kg (4 m)2 + 02

= 137 kg m2

Note that  since ∑m x2 + y2 = ∑m x2 + ∑m y2,  the moment for  part  (c)  must  be the sum of the moments for  parts  (a)  and (b),
137 = 44 + 93.

To get the kinetic energy use ω = 3 rad /s.

K =
1

2
I ω2 = 616.5 J

Example J.4 - Moments for Different Axes

Consider the cylindrical rigid body and the three axes shown.

If I1 is the moment of inertia for Axis 1, I2 for Axis 2 and I3 for Axis 3. Rank the three moments.

Solution
The distribution of mass is closest to Axis 3, so I3 is the smallest. The mass is further from Axis 2 than Axis 2, so we get:

I3 < I1 < I2

Moments of Inertia for Uniform Bodies

Hoop or Thin-shelled Hollow Cylinder about Perpendicular Axis through Center
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First consider a hoop of mass M and radius R rotating about a perpendicular axis through the center.  r is the distance from the axis to the
infinitesimal mass ⅆm.  All the mass is at the same distance

r = R = constant.

It is possible to find I without actually performing an integral.

I =m r2 =m R2 = R2 m

Since M = ∑m we get

I = M R2.
Now consider a thin-shelled hollow cylinder about the central axis.  It is still true that all the mass is the same perpendicular distance of  r = R
from the axis and the above formula still applies.

Disk or Solid Cylinder about Perpendicular Axis through the Center

It should now be clear that the moment for a disk should be the same as a solid cylinder.  We can break up a disk into concentric thin rings
of radius r with thickness ⅆ r.  The limits of integration become

0 ≤ r ≤ R.

If all the mass were at r = 0, then I = 0. If all were at r = R, then it would be the same as a hoop and I = M R2. It then must satisfy: 0 < I < M R2.
It can be shown using calculus that

I =
1

2
M R2.

Table of Moments of Inertia for Uniform Distributions with Different Geometries and Axes

Thin Rod Cylindrical Shell or Hoop Solid Cylinder or Disk

I2=
1
3
ML2, I1=

1
12

ML2 I2=2MR2, I1=MR2 I2=
3
2
MR2, I1=

1
2
MR2

Rectangular Plate Hollow Spherical Shell Solid Sphere

I= 1
12

M a2 + b2 I2=
5
3

MR2, I1=
2
3

MR2 I2=
7
5

MR2, I1=
2
5

MR2
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Thin Rod Cylindrical Shell or Hoop Solid Cylinder or Disk

I2=
1
3
ML2, I1=

1
12

ML2 I2=2MR2, I1=MR2 I2=
3
2
MR2, I1=

1
2
MR2

Rectangular Plate Hollow Spherical Shell Solid Sphere

I= 1
12

M a2 + b2 I2=
5
3

MR2, I1=
2
3

MR2 I2=
7
5

MR2, I1=
2
5

MR2

By a uniform distribution of mass we mean the density is constant throughout the body.

J.3 - Energy and Rigid Bodies

Gravitational Potential Energy

It is a straightforward matter to find the potential energy of a rigid body.  

U =
i

mi g yi = g 
i

mi yi = g M ycm

Here M is the total mass and ycm is the height of the center of mass.  It follows that the total potential energy of a rigid body is 

U = M g ycm.

This is easy to interpret.  When calculating the potential energy of a rigid body we treat the body as if all its mass is at its center of mass.

Example J.5 - Swinging Rod

A uniform rod of length L swings without friction about an axis at one end.  It is released from rest from a horizontal position.  What is
the speed of the tip as it swings through the position directly below the axis”

Solution
We will use conservation of energy to find the angular velocity of the rod below and from that find the linear velocity of the tip.
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We have kinetic energy K = 1
2

I ω2 in the rotating rod and potential energy U = m g ycm, where ycm is the height of the center of
the rod.  The mechanical energy is conserved and given by.

E =
1

2
I ω2 + m g ycm

The initial kinetic energy is zero and the initial and final heights of the center of mass are  ycm,i = L /2 and  ycm, f = 0, choosing
the lower point as the zero.

Ei = Ef ⟹ 0 + m g
L

2
=

1

2
I ω f

2 + 0

For our uniform thin rod we have I = 1
3

m L2

m g
L

2
=

1

2
I ω f

2 =
1

2

1

3
m L2 ω f

2 ⟹ ω f =
3g

L

The velocity can be found from the angular velocity using the tangent velocity formula, vt = r ω.  Since r is the distance from the
axis we have r = L.

v = r ω = L ω f = L
3g

L
= 3gL

Rotation with Translation

If a body is rotating and translating then there is kinetic energy in the rotation and in the translation. The total kinetic energy Ktot is the sum
of  Ktran,  the  translational  kinetic  energy and Krot,  the  rotational  kinetic  energy.  If  v  is  the  speed of  the  center  of  mass  and I  is  the  moment  of
inertia through the center of mass then

Ktot = Ktran + Krot =
1

2
M v2 +

1

2
I ω2

Rolling Motion

In the case of a rolling body we have a rolling constraint that a body rolls without slipping.  This is: the arc length along the rolling radius of
the  body is  the  same as  the  distance  Δx  it  moves  along  the  surface  it  rolls  on.   If  it  rotates  by  an  angle  Δθ  then  the  arc  length  is  R Δ θ.   The
constraint becomes

R Δ θ = Δ x.
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Δθ

RΔθ

Δx=RΔθ

Interactive Figure

Since the velocity is v = limΔ t→0Δx /Δt and the angular velocity is ω = limΔ t→0Δθ /Δt the rolling constraint becomes

R ω = v

and similarly, with the acceleration and angular acceleration and we get

R α = a.

Ktot = Ktran + Krot =
1

2
M v2 +

1

2
I ω2 =

1

2
M +

I

R2
v2

The last expression above follows from v = Rω and replacing the angular velocity ω with v /R. The total kinetic energy depends on the total mass
M and the speed of the center of mass. The rotational kinetic energy depends on the moment of inertia about the axis through the center of mass.

Example J.6 - Rigid Body Races

Different  objects,  a  uniform solid sphere,  a  uniform hollow spherical  shell,  a  uniform solid cylinder  and a  uniform hollow cylindrical
shell,  are  rolled  down an  incline.   The  objects  have  varying  masses  and  radii.   Which  will  move  fastest  at  the  bottom of  the  incline,
which we take to be of height h?  Find the speed of each.  Assume that they roll without slipping.

Solution

We will solve all four cases by writing I = κ M R2 where the table below gives the different κ values.

Object I = κ M R2 κ
Solid Sphere 2 /5

Solid Cylinder 1 /2
Hollow Spherical Shell 2 /3
Hollow Cylndrical Shell 1

We will see that the mass M  and radius R  scale out of the problem and the speed at the bottom will only depends on κ  and h.
The only potential energy here is gravitational potential energy and that is determined by the position of the center of mass.

U = M g ycm

For the total kinetic energy we have translational and rotational terms.

Ktot = Ktrans + Krot =
1

2
M v2 +

1

2
I ω2
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Our rolling without slipping constraint R Δ θ = Δ x implies that R ω = v.  Using  I = κ M R2 and  ω = v /R we get:

Ktot =
1

2
M v2 +

1

2
I ω2 =

1

2
M v2 +

1

2
κ M R2

v

R

2
=

1

2
(1 + κ) M v2.

It follows that our total mechanical energy is

E = Ktot + U =
1

2
(1 + κ) M v2 + M g ycm.

Choosing the lowest position of the center of mass to be ycm = 0 we get  ycm,i = h  and  ycm, f = 0.  Out initial kinetic energy is
zero.

Conservation of mechanical energy gives:

Ei = Ef ⟹ 0 + M g h =
1

2
(1 + κ) M v2 + 0 ⟹ v =

2 g h

1 + κ
.

It  should  now  be  clear  that  the  smaller  the  κ,  the  larger  the  speed  at  the  bottom.   The  order  from  fastest  to  slowest  is:  solid
sphere, solid cylinder, hollow sphere and hollow cylinder.

Previously, when considering pulleys we used ideal pulleys, which were frictionless and light, meaning that the mass of the pulley was negligi-
ble compared to the other masses in the problem. Now we consider an example with a pulley with mass that is not small.

Example J.7 - A Pulley with Mass

M

h

m

A mass m hangs from a string connected to a pulley as shown above. Take the pulley to be a uniform disk of mass M. The string is tied
to the pulley and is wrapped around it many times, to ensure that the string does not slip on the pulley. If m  is released from rest at a
height h above a floor, then what is its speed when it hits the floor. Assume no friction in the pulley or elzewhere.

Solution
We are not given the radius of the pulley but we will see that it cancels out. Energy is conserved here. The energy consists of the
translational kinetic energy of the falling mass, the rotational kinetic energy of the pulley and the gravitational potential energy
of the falling mass.

E =
1

2
m v2 +

1

2
I ω2 + m g y

The constraint that the string does not slip along the pulley is equivalent to the rolling constraint. The arc length of rotation must
equal the distance the string (and m) move.

R Δθ = Δx

and that gives a relation between the angular velocity of the pulley and the linear velocity of the falling mass.
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R ω = v

Because the pulley is a uniform disk we can write.

I =
1

2
M R2

Using that and writing ω = v /R we can rewrite the expression for the energy.

E =
1

2
m v2 +

1

2
×

1

2
M R2

v

R

2
+ m g y =

1

2
m +

1

2
M v2 + m g y

Taking yi = h, y f = 0 and vi = 0, we can solve for v f .

Ei = Ef ⟹ 0 + m g h =
1

2
m +

1

2
M vf

2 + 0 ⟹ v f =
2 m g h

m + M /2
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