
Chapter K
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Blinn College - Physics 1401 - Terry Honan

K.1 - Torque and Angular Momentum

Torque about an Axis

Axis r

r⊥= r sin θ

F F⊥=F sin θ

θ

θ

We define torque as the rotational analog of force.  Suppose you are trying to loosen a bolt.  The axis of rotation is the center of the bolt.  If
you are unable to give sufficient torque with your hand you grab a wrench.  Take r as the vector from the axis to where the force F  is applied.
Clearly the important part of the force is the component of the force perpendicular to the radial vector r.  Moreover the larger r is the larger the
torque.  This motivates the definition of torque

τ = r F⊥

If θ is the angle between r and F  then we can write F⊥ = F sin θ.  Similarly we can  r⊥ = r sin θ as the component of r perpendicular to F.  This
gives us other ways of writing the torque.

τ = r F⊥ = r F sin θ = r⊥ F

The sign of torque depends on the sign convention for kinematics.  If a force tends to make something rotate in the positive direction then
the torque is positive and similarly negative torques tend to make things rotate in the negative direction.

Example K.1 - Torques on a Disk
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Four forces act on a disk with a 0.4-m radius.

(a) What is the torque of each force, taking counterclockwise as the positive sense of rotation?

Solution
The three equivalent formulas for torque are

τ = r F⊥ = r F sin θ = r⊥ F.

For clarity, we will label the torques by τ30, τ50, τ40, and τ70.  For τ30  the r is the hypotenuse of the two sides given, but we do
not  need its  value.   The part  of  r  perpendicular  to  the force is   r⊥ = 0.30 m.  Since counterclockwise is  positive this  torque is
negative since, acting by itself, it will make the disk rotate clockwise.

τ30 = -r⊥ F = -(0.30 m) 30 N = -9.00 Nm

The 50-N force is perpendicular to the radial vector.  The 50 ° angle is irrelevant here.  It is also a clockwise and thus a negative
torque.

τ50 = -r F⊥ = -(0.40 m) 50 N = -20.00 Nm

The component of the 40-N force perpendicular to the radial vector is  F⊥ = (80 N) cos 35°.   Alternatively, we can identify the
angle between the radial vector and the force is  90° - 35° = 55°.  This force make it rotate in the counterclockwise sense.

τ40 = +r F⊥ = +(0.40 m) (40 N cos 35°) = 13.11 Nm

(or τ40 = +r F sinθ = +(0.40 m) (40 N) sin55° = 13.11 Nm)

The 70-N force is perpendicular to the radial vector and is counter-clockwise and thus a positive torque.

τ70 = r F⊥ = (0.20 m) 70 N = 14.00 Nm

(b) What is the net torque on the disk, where net torque is the sum of the torques?

Solution
τnet = τ30 + τ50 + τ70 + τ80 = -1.89 Nm

The negative sign means that the net torque will cause a clockwise rotation.

(c) How would the answers to parts (a) and (b) be different if clockwise were chosen as the positive sense of rotation?

Solution
If clockwise were our positive sense of rotation then all torques would change signs.

Angular Momentum of a Particle and Torque

Given the vectors r and F, we previously defined the torque about any axis as

τ = r F⊥ = r F sin θ = r⊥ F
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We can similarly define the angular momentum of a particle with momentum p at a position r; the angular momentum about any axis is

L = r p⊥ = r p sin θ = r⊥ p

Both of these expressions are relative to an axis; here r is the perpendicular vector from the axis to a particle and p is the particle’s momentum.
In one-dimension we could write the second law for a particle as: Fnet = limΔt→0Δp /Δt. The net torque on a particle is the torque due to the net
force: τnet = r⊥ Fnet. Using more calculus than is possible in this course, it can be shown that 

τnet = lim
Δt→0

ΔL

Δt
τnet is the net torque on a particle about some axis and L is the particle’s angular momentum about that axis. 

As an example of this, consider a free particle. Free means that there is no force acting on it and that implies no torque. It follows that the
angular momentum of that free particle must be constant. This is easy to see with the figure below. No force means that p is a constant. r⊥is the
distance from the axis to the particle’s line of motion and that is also constant. Thus L = r⊥ p is constant.

axis

r⊥

p

r

Interactive Figure - The angular momentum of a free particle is constant.

System of Particles and the Conservation of Angular Momentum

In Chapter 9 we saw that for a system of particles that 

Fnet
ext

= lim
Δt→0

Δ ptot

Δt
or Fnet,ave

ext
=

Δ ptot

Δt
A similar but a bit more complicated derivation in the case of torques and angular momenta about an axis we have a similar result.

τnet
ext = lim

Δt→0

ΔLtot

Δt
or τnet,ave

ext =
ΔLtot

Δt
This result is true for all axes.

The   conservation  of  angular  momentum follows  from the  expression  above.   If  there  are  no  external  torques  on  a  system then  the  total
angular momentum of the system is conserved.

τnet
ext = 0 ⟹

ΔLtot

Δt
= 0 ⟹ ΔLtot = 0

This derivation mirrors the conservation of linear momentum.

This is a very fundamental result.  It has deep implications on the very large scale; in astrophysics it is crucial in the dynamics of planets,
stars, solar systems and galaxies.  It is also important on the very small scale; in particle accelerators where elementary particles are collided and
created, angular momentum is always conserved.

K.2 - More on Rigid Bodies

Angular Momentum of a Rigid Body

As before, we view our rigid body as a collection of point masses where the perpendicular distance form the axis to mi  is ri. Since all the ri
are fixed we get the momentum related to the tangential velocity, which is then related to the angular velocity.

pi⊥ =mi vit =mi ri ω
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The angular momentum of the ith mass becomes

Li = ri pi⊥ = ri mi vit =mi ri2 ω

The total angular momentum is the sum over all these terms  L = L1 + L2 + ….  Using  I = m1 r1
2 + m1 r1

2 + … we get the angular momentum
of a rotating rigid body

L = L1 + L2 +…=mi ri2 ω +mi ri2 ω +…= mi ri2 ω +mi ri2 ω.

This  gives  the result  we had in  our  table  from last  chapter  that  related rotations  about  a  fixed axis  to  one dimensional  linear  motion.  It  is  the
rotational analog of p = m v.

L = I ω

Example K.2 - Angular Momentum of the Earth

The mass of the earth, the radius of the earth and the earth-sun distance are:

ME = 5.97×1024 kg , RE = 6.38×106 m and RES = 1.50×1011 m.
Here assume a circular orbit.

(a) Estimate the rotational angular momentum of the earth, assuming it is a uniform sphere? 

Solution

I =
2

5
ME RE2 = 9.72×1037 kg m2

The angular velocity can be found from its rotational period of 1 day.

ωrot =
2 π

T
=

2 π

1day
=

2 π

24×3600 s
= 7.27×10-5 s-1

The estimated angular momentum can then be found.

L = I ωrot = 7.07×1033 kg m2 s

(b) Is the estimated result in part (a) too large or too small?

Solution
Because the earth is denser at its core the estimated moment is too large and thus the estimated angular momentum is too large.

(c) What is the orbital angular momentum of the earth as it orbits the sun?

Solution
Now we consider the angular momentum of a particle.  First we find the speed from the orbital angular velocity

ωorbit =
2 π

T
=

2 π

1yr
=

2 π

365.24×24×3600 s
= 1.992×10-7 s-1.

The tangential velocity gives the momentum, which is perpendicular to the radial vector.

v = vt = rω ⟹ L = r p⊥ = r p = r m v =m r2 ω

L =ME RES
2 ωorbit = 2.67×1040 kg m2 s

Note that an alternative solution can be found using L = Iω and I = ∑i mi ri2 = m r2.

Example K.3 - The Rotating Figure Skater

A figure skater spins about a vertical axis.  With her arms out she has a moment of inertia of Iout   and rotates at ωout.  When she brings
his arms in, her moment is smaller, Iin.  The moments are about the vertical axis of rotation.

(a) What is ωin, her angular velocity with her arms in?
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Solution
If  the  stool  is  frictionless  then  there  is  no  net  external  torque  acting,  so  angular  momentum  is  conserved.   The  angular
momentum is L = I ω.  It follows that

Lout = Lin ⟹ Iout ωout = Iin ωin ⟹ ωin =
Iout

Iin
ωout

Since Iin < Iout it follows that he rotates faster  ωin > ωout.

(b) Compare the kinetic energies Kin and Kout.

Solution

The kinetic energy is K = (1 /2) I ω2.  Using L = I ω we can write K in terms of L and I; since L is conserved this is useful.

K =
1

2
I ω2 and L = I ω ⟹ K =

L2

2 I
Since Lin = Lout = L, it follows that  Kin > Kout.

Iin < Iout ⟹ Kin =
L2

2 Iin
>

L2

2 Iout
= Kout

Where did the extra energy come from when she brings her arms in?  View this from the perspective of the non-inertial rotating
frame where there is the false centrifugal force acting outward.  To bring her arms in she must do work against the centrifugal
force; that is the source of the extra energy.

Example K.4 - Bullet Shot in Door

A bullet of mass m is shot at speed v toward a door.  The bullet’s velocity is perpendicular to the door and it hits the door at a distance d
from the door’s hinge.  The door has mass M, height h and width w; assume that it swings without friction about the hinge.  If the door is
initially at rest then what is its angular velocity after the bullet embeds in it.

Solution
Given  there  is  no  friction  in  the  hinge,  there  is  no  external  torque  about  the  hinge  and  angular  momentum  is  conserved.
Initially,  there  is  no  angular  momentum  in  the  door  but  the  bullet  does  have  angular  momentum.   We  use  the  angular
momentum of a particle: 

Li = r⊥ p = d m v.

After the bullet embeds in the door we have a rotating rigid body.  The moment of inertia consists of the door’s moment added
to the bullet’s contribution.  The door is the same as a rod of length w; its height is irrelevant.  
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Idoor =
1

3
M L2 =

1

3
M w2

The moment of inertia of the bullet after embedding comes from the moment for a discrete distribution.

Ibullet =
i

mi ri2 =m d2

The final angular momentum is  Lf = I f ω f  where  I f = Idoor + Ibullet.  Conservation of angular momentum gives ω f .

Li = Lf ⟹ d m v =
1

3
M w2 +m d2 ω f ⟹ ω f =

d m v
1
3
M w2 +m d2

The Rotational Second Law

We can now, finally, derive the rotational equivalent of the second law τnet = Iα.  Start with the the expression for a system of particles.

τnet
ext = lim

Δt→0

ΔLtot

Δt
When the system is the rigid body then the net external torque on the rigid body is just the net torque on it. Similarly, the total angular momen-
tum is just I ω the angular momentum of the body.  We get

τnet = lim
Δt→0

ΔL

Δt
.

Using  L = I ω and α = limΔt→0Δω/Δt we get our result.

τnet = I α

Example K.5 - Torques on a Disk (Continued)

(d) Suppose the disk in Example 11.1 is uniform and has a mass of 3.5 kg. What is the angular acceleration of the disk?

Solution
In Example 11.1 the radius was given as R = 0.40 m. In part (b) we found the net torque was τnet = -1.89 N m. First we need to
find the moment of inertia of the uniform disk. The mass is m = 3.5 kg.

I =
1

2
m R2 = 0.28 kg m2

The rotational second law then gives us an expression for the angular acceleration α.

τnet = I α ⟹ α=
τnet

I
= 6.75

rad

s

The Torque Due to Gravity

We saw in the previous chapter that to calculate the potential energy due to gravity we treat the object as if all the mass is at the center of
mass.  The same is true for finding the torque due to gravity.

τgrav = rcm,⊥ M g

It is straightforward to verify this. Write the torque as the sum over the torques on all the point masses in the body. Then use the definition of
center of mass to get the result.

τgrav = r1,⊥ m1 g + r2,⊥ m2 g…= (m1 r1,⊥ +m2 r2,⊥ …) g = (M rcm,⊥ ) g

Note that since gravity is vertical the perpendicular component of the r vectors will always be the horizontal component.

This is why the term center of gravity is commonly used for the center of mass. To calculate  both the gravitational potential energy and the
torque due to gravity, you treat a system as if all of the mass is located at the center of mass.
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Example K.6 - Swinging Disk

R
θ

α=?

Center

Axis

A uniform disk  of  radius  R  swings  without  friction  about  a  perpendicular  axis  through  its  rim.   What  is  its  angular  acceleration  as  it
swings through a position where the center is at an angle of θ from vertical, as shown?

Solution
We first  need to draw a free-body diagram.  When we draw free-body diagrams for torques we must draw the forces into the
diagram carefully  showing where they act.   Here,  the  only contact  force is  at  the  axis;  this  force gives  zero torque,  since r  is
zero.  The only torque comes from the weight mg, which acts at the center.  The angle between the radial vector and the force is
θ, so we can use the τ = rF sinθ formula.  We choose our sense of rotation, clockwise, as positive, so the torque is positive.

τnet = τgrav = rF sinθ = Rmg sinθ

The moment of inertia can be found using the parallel-axis theorem.

I =
3

2
m R2

The rotational second law gives us the angular acceleration.

τnet = I α ⟹ Rmg sinθ =
3

2
m R2 α ⟹ α=

2 g

3 R
sinθ

Example K.7 - Atwood’s Machine with a Massive Pulley

M

m1

m2

a=?

In chapter D we solved Atwood’s machine with an ideal pulley.  Recall that an ideal pulley was frictionless and light, where light means
that the pulley’s mass is  small  compared to the other masses in the system.  Now we will  consider a pulley with mass;  it  will  still  be
frictionless.   With  an  ideal  pulley  the  tension  on  both  sides  is  the  same.   Here,  with  a  massive  pulley  the  tensions  on  either  side  are
different.  The different tensions are responsible for the angular acceleration of the pulley.

m1 and m2 are two masses connected by a light string over a frictionless pulley as shown.  The pulley is a uniform disk of mass M.  Take
m1 < m2.  What is the downward acceleration of m2?

Solution
With our constrained system the motion of each mass is related.  Let Δx1 be the upward displacement of mass 1 and Δx2 be the
upward displacement of 2.  The assumption of tension is that the rope or string does not stretch, so these must be equal.  We also
assume that the string does not slide on the pulley.  This relates the rotational motion of the pulley to the linear motion of the
hanging masses; the arc length R Δθ, where R is the pulley’s radius, must equal the hanging masses displacements.

Δx1 = Δx2 = Δx = R Δθ
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Taking derivatives we can relate the velocities  v1 = v2 = v = R ω  and accelerations.

a1 = a2 = a = R α

Note that R was not given.  We introduce it in our solution, so it must cancel.

We need to draw a free-body diagram for each mass and for the pulley.  For the pulley we draw the free-body diagram into the
diagram, showing where the forces act.  For the hanging masses this is the same as what we saw in Chapter D, except that the
tensions are now different.

M

m1

m2

α

a

a

Faxis

T1 T2

Mg

RR

T1
T2

m1g

m2g

a

m1

a

m2

Applying the second law to the hanging masses gives a pair of equations.  Here we choose the directinos of the accelerations as
positive.

Fnet,1 =m1 a1 ⟹ T1 -m1 g =m1 a

Fnet,2 =m2 a2 ⟹ m2 g - T2 =m2 a

In Chapter D, where the tensions were equal this gave two linear equations with two unknows.  Now we have three unknowns, a
and the two tensions.    There are four forces acting on the pulley, the two tensions, the pulley’s weight Mg and an upward force
Faxis  acting at the axis; since these two forces act at the axis they produce no torque.  We choose clockwise as positive, since
that is the direction of our angular acceleration.  The tensions are perpendicular to the radial vector so τ = r F⊥ = RF.  We now
apply the rotational second law applied to the pulley.

τnet = I α ⟹ R T2 - R T1 = I α =
1

2
M R2 α

Here we have added another equation but also added another unknown α.  We can use a = Rα to eliminate α in favor of a.  We
can also use the fact that the pulley is a uniform disk.

R T2 - R T1 = I α =
1

2
M R2

a

R
⟹ T2 - T1 =

M

2
a

Adding this to the two second law expressions for the hanging masses we eliminate the tensions and we get our answer.

m2 g -m1 g = (m1 +m2 +M /2) a ⟹ a =
m2 -m1

m1 +m2 +M /2
g

K.3 - Static Equilibrium

The Conditions for Equilibrium

If  a  body is  in  equilibrium then there  is  no  acceleration  and there  is  no  angular  acceleration.   This  implies  that  the  net  force  and the  net
torque must vanish.

Fnet = 0 and τnet = 0
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The Choice of Axis is Arbitrary

When considering an equilibrium problem sometimes the choice of axis is clear.  Often, though, it is not clear; there is no natural choice.
The  key  point  is  that  the  choice  of  origin  or  axis  is  arbitrary.  When  something  is  arbitrary  then  we  have  the  luxury  of  making  a  choice  that
simplifies the problem. The basic result is this: If the torques balance about one axis and the forces balance, then the torques balance about any
axis parallel to the first. Suppose Fi is one of the forces acting on a body. Take the perpendicular vector from one axis to another is r0. Also take
ri as the perpendicular vector from the original axis to the where the force Fi  acts and  ri

′ is from the new axis to the same point.

ri = ri
′ + r0.

axis

new
axis

ri
ri
′

r0

Fi

The torques due to Fi can then be written as

τi = ri,⊥ Fi = ri,⊥′ Fi + r0,⊥ Fi = τi′ + r0 Fi.⊥

Summing over all the forces Fi gives

τnet = τnet
′ + r0 Fnet.⊥

It follows that if the net torque is zero about one axis and the net force is zero (Fnet = 0 ), then the net torque is zero about any axis parallel to the
first.

0 = τnet and Fnet = 0 ⟹ τnet
′ = 0

Example K.8 - Hanging Meter Stick

TL TR

A horizontal uniform meter stick of weight W hangs from vertical strings at the 20-cm and 60-cm lines.  What are both tensions, TL  and
TR?

Solution
The net torque and net force are both zero.  The two tensions are the unknowns.  Setting the net force to zero gives one equation,
since all forces are vertical.

Fnet = 0 ⟹ TL + TR =W

TL
TR

W

A C

0.40m

0.30m

0.10m

+

We may choose the axis anywhere.  Any force that acts at the origin produces no torque.  If we choose the axis to be when an
unknown  acts  then  the  torque  equation  will  not  involve  that  unknown.   We  will  choose  the  axis  labeled  A  where  TL  acts.
Choosing clockwise as our positive sense of rotation we can write the torque equation and can solve for TR
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We may choose the axis anywhere.  Any force that acts at the origin produces no torque.  If we choose the axis to be when an
unknown  acts  then  the  torque  equation  will  not  involve  that  unknown.   We  will  choose  the  axis  labeled  A  where  TL  acts.
Choosing clockwise as our positive sense of rotation we can write the torque equation and can solve for TR

0 = τnet,A = 0 + (0.30 m)W - (0.40 m) TR ⟹ TR =
3

4
W

The force equation lets us find TL.

TL + TR =W ⟹ TL =W - TR =
1

4
W

(Note  that  if  we  chose  a  different  axis  we  would  get  the  same  answer.   For  instance,  choosing  the  center  C  we  get:
τnet,C = (0.30 m) TL - (0.10 m) TR.  This leads to  3 TL = TR and with the force equation we get the same solution.)

Example K.9 - Leaning Ladder

A uniform ladder of length L  leans against a frictionless wall, making an angle of θ  with the floor.  What is the normal force N  of the
wall on the ladder and what are the horizontal and vertical components, H and V, of the force of the floor on the ladder?

θ

L

H=?

V=?

N=?

Solution
The position of the axis is arbitrary but in this problem, given that two of the three unknowns act at the base of the ladder, that is
the natural axis to choose; those two unknowns will not appear in our torque equation.

θ

L

L/2

L

2
cosθ

L sinθ

H

V

N

W

Axis

+

This is a two-dimensional problem so the force condition gives two equations.
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Fnet,hor = 0 ⟹ N =H
Fnet,ver = 0 ⟹ V =W

For torques about our axis at the base of the ladder, we have two forces to consider.  

Since the weight W is vertical r⊥ is the horizontal part of r.  Since we have r = L /2.  Chosing counterclockwise as positive the
torque due to the weight is positive.

τW = r⊥ F = +
L

2
cosθ W

The  normal  force  of  the  wall  N  is  horizontal,  so  r⊥  is  the  vertical  part  of  r = L.   It  is  clockwise  and  thus  negative  with  our
convention.

τN = -r⊥ F = -(L sinθ) N

Our torque equation gives N and using H = N, gives H.

0 = τnet = τW + τN + τH + τV = +
L

2
cosθ W - (L sinθ) N + 0 + 0

Our full answer follows.

H = N =
W

2 tan θ
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