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Universal Gravitation
Blinn College - Physics 1401 - Terry Honan

L.1 - The Force of Gravity

Introduction

If Isaac Newton had merely written down his three laws of motion he would probably still be known as the most important physicist of all
time.  Instead, he went far beyond that; he solved all elementary problems involving mechanics and he found the force law describing gravity.
His theory of gravity is the topic of this chapter.

The  history  of  physics  is  largely  a  history  of  the  unification  of  the  fundamental  forces.   Before  Newton  there  were  separate  notions  of
gravity.  What was known as gravity before Newton was the force holding things to the surface of the Earth; we will call this terrestrial gravity.
It  was  not  clear  that  this  force  was  the  same  as  what  was  responsible  for  the  motion  of  planets,  moons  and  comets;  this  we  will  refer  to  as
astronomical gravity.  Newton, with his theory of universal gravitation showed that these two forces were actually the same; he unified terrestrial
and astronomical gravity.

Origin of the Inverse Square Law

F12F21m1 m2

r

Newton was trying to understand the force law between point  masses m1  and m2  separated by a distance r.   The weight  of  a  body is  the
gravitational force on it.  Since the weight is proportional to the mass, the force on m2 must be proportional to m2.

F ∝ m2

Because of Newton's third law the magnitude of the force on m1 is the same. Thus the force on m2 must also be proportional to m1.

F ∝ m1

How  does  the  force  vary  with  distance?   It  should  also  decrease  with  the  distance  r  and  should  go  to  zero  as  r  approaches  infinity.  Some
possibilities are

F ∝
1

r
, F ∝

1

r2
, F ∝

1

r3
or F ∝

e-α r

r2
.

Newton settled on an inverse square law

F ∝
1

r2
.

He deduced the inverse square law by comparing the ratio of the acceleration of the moon toward the earth to the acceleration due to gravity at
the surface of the earth to the ratio of the radius of the moon's orbit to the radius of the earth.  Suppose the force has the form  F ∝ rp  for some
power p, where an inverse square law gives p = -2.  Since the acceleration of a body is proportional to the force F ∝ a we can conclude a ∝ rp.
From this proportionality we can write the ratio

a2

a1
=

r2

r1

p
.

We can find the power p using logs.

p =
ln(a2 /a1)

ln(r2 /r1)
Let a2 and r2 refer to the moon's orbit.  At Newton's time the acceleration of the moon toward the earth could be calculated.  The period of

the moon's orbit is T2 = 27.32 days.  The earth-moon distance, which was measured by parallax, is r2 = REM = 3.84×108 m.  This gives  



a2 =
2 π

T2

2

r2 =
2 π

27.32×24×3600 s

2

3.84×108 m = 0.002721
m

s2
.

The acceleration at  the surface of  the earth is  a1 = g = 9.80 ms2  at  a  distance given by the earth's  radius  r1 = RE = 6.37×106 m.  Combining
these expressions gives

p =
ln(a2 /a1)

ln(r2 /r1)
=

ln 0.002721
9.80



ln 3.84×108

6.37×106 
= -2.00,

which verifies the inverse square law.

Newton realized that there was a crucial flaw in his logic here. He wanted a force law between particles; by a particle it is meant that the
distance to an object is large compared to the size of the object. Clearly this is not correct for an object on the surface of the earth. Newton felt
that the gravitational force for a spherical body, as long as one is outside of the body, is the same as if all of the mass is at the center. To prove
this Newton had to first invent integral calculus and then do a difficult calculation with this new mathematics. 

Newton's Law of Universal Gravitation

Newton's law of gravity is the attractive inverse square law between point masses. If m1 and m2 are point masses separated by distance r the
magnitude of the force between them is

F = G
m1 m2

r2
.

This can be written as a vector expression.  Let r12 be the vector from mass 1 to mass 2 and let F12 be the force on mass 2 due to mass 1.  

F12 = -G
m1 m2

r12
2

r12

r12 is the unit vector in the direction of the vector r12.

r12 =
r12

 r12 
=

r12

r12

m1 m2r12

r12 F12

The constant G is known as Newton's universal gravitational constant. Gravitational forces between everyday objects are incredibly small.
This is reflected in the small value of G in our SI system of units. Newton never knew the value of this constant.  It was eventually measured to
be

G = 6.673×10-11
N ·m2

kg2
.

The Force on a Mass Due to a Distribution of Masses
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Suppose we want to find the force on a mass m due to a discrete distribution of masses, m1, m2, ... .  Define the vector ri to be from mi to m.
The force of mi to m is

Fi = -G
m mi

ri
2

ri

where ri = ri /ri.  The total force is the sum of all these parts  F = F1 + F2 + …. This gives

F = -G m
m1

r1
2

r1 +
m2

r2
2

r2 +…

This is just using the idea that force is a vector and that forces add as vectors.

Example L.1 - Net Force on Moon

What is the magnitude net force on the moon, due to the earth and sun, at a (i) full moon, (ii) new moon and (iii) half moon?

RES
REM

Sun Earth

Moon

(i) full moon(ii) new moon

(iii) half moon

(not to scale)

The masses of the earth, the moon and sun, and the earth-moon and the earth-sun distances are:

ME = 5.97×1024 kg , MS = 1.99×1030 kg , MM = 7.35×1022 kg ,
REM = 3.85×108 m and RES = 1.50×1011 m

Here assume a circular orbit.  Looking at their numerical values we can also see that REM << RES, we will assume this, as well.

Solution
The magnitude of the force of the earth on the moon is

FE = G
ME MM

REM
2

= 1.975×1020 N .

The sun-moon distance varies, but with the  REM << RES assumption we can set the moon-sun distance to the earth-sun distance,
RMS = RES.  The magnitude of the sun’s force on the earth becomes

FS = G
MS MM

RES
2

= 4.338×1020 N .

(i) For the case of the full moon both forces FS  and FE  are in the same direction, to the left in the diagram.  The magnitude of
the net force is the sum of the two magnitudes.

Fnet = FS + FE = 6.31×1020 N

(ii) With the new moon, the forces FS and FE are in opposite directions, in the diagram: to the left for the sun and to the right for
the earth.  The magnitude of the net force is now the difference.

Fnet = FS - FE = 2.36×1020 N

(iii) At the half moon phase, the forces FS  and FE  are perpendicular, since in the limit REM << RES the hypotenuse of the earth-
moon-sun triangle becomes parallel to the long side.  The magnitude of the net force found by the Pythagorean theorem.

Fnet = FS
2 + FE

2 = 4.77×1020 N

Note that since FS > FE the moon’s trajectory must always curve toward the sun.

Spherical Bodies

As discussed earlier, Newton got his inverse-square law by relating the acceleration of the moon toward the earth to the acceleration at the
surface of  the  earth.  However,  in  his  calculation he treated the  earth  as  if  all  of  its  mass  was at  its  center.  We have seen that  for  purposes  of
calculating the potential energy and torque due to a uniform gravity, the center of mass of a system is its center of gravity and we can treat it as if
all the mass is at its center. It is tempting to speculate that for a distribution of mass, it  behaves gravitationally as if all of its mass were at its
center of mass. After a little reflection we can see that this cannot be the case. The center of mass of the solar system is at the center of the sun,
but on the surface of the earth we are much more attracted to the earth; we are not falling toward the sun.
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As discussed earlier, Newton got his inverse-square law by relating the acceleration of the moon toward the earth to the acceleration at the
surface of  the  earth.  However,  in  his  calculation he treated the  earth  as  if  all  of  its  mass  was at  its  center.  We have seen that  for  purposes  of
calculating the potential energy and torque due to a uniform gravity, the center of mass of a system is its center of gravity and we can treat it as if
all the mass is at its center. It is tempting to speculate that for a distribution of mass, it  behaves gravitationally as if all of its mass were at its
center of mass. After a little reflection we can see that this cannot be the case. The center of mass of the solar system is at the center of the sun,
but on the surface of the earth we are much more attracted to the earth; we are not falling toward the sun.

Newton was able to show that a spherical body, gravitationally behaves the same as if all of its mass were at its center, as experienced from
any point on the surface of the sphere or outside of it.

for r ≥ R, F = -G
M m

r2
r

M

R

r

m

A spherical body: It is unchanged under any rotation
   about its center. The density can vary with radius.       

By a spherical body we mean that it looks the same under any rotation about its center. It need not be a uniform sphere; the density can very with
the distance from the center.  Although the earth is oblate and not exactly spherical,  it  is reasonable approximated as spherical.  It  is not to any
approximation a uniform solid sphere, but the density mostly varies with the distance from center, so it is reasonably spherical. Smaller astronomi-
cal bodies, like comets and asteroids, are far from spherical. Larger astronomical bodies like planets and larger moons tend to be spherical.

The Gravitational Field

We will refer to the acceleration due to gravity at some position as the gravitational field g; typically this no longer will be uniform.  Since
the force on a mass m  is  F = m g  we can define the field at some position by the following procedure.  Add a test mass m0  at some position.
Define the field at that position to be the force divided by the test mass.

g =
F

m0

The result is then independent of the test mass.

Now consider a point mass M at the origin. The gravitational field at position r is found by placing a test mass m0 there. The force on m0 is

F = -G
m0 M

r2
r.

Dividing m0 into this gives

g = -G
M

r2
r or g = g  = G

M

r2
.

This also applies outside of a spherical body. At the surface of a spherical planet of mass M and radius R, the magnitude of the field is

g = G
M

R2
.
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Gravitational field at the surface and around a spherical planet

Example L.2 - Weight on a Different Planet

An astronaut has an earth weight of 120lb.  What is her weight, in pounds, on a planet with twice the earth’s radius and five times its
mass.

Solution
The gravitational field (or acceleration due to gravity) g on the surface of a spherical planet of mass M and radius R is:  

g = G
M

R2
.

The weight  W  of  an astronaut  of  mass m  is  related to g  by W = mg.   Both formulas apply to both cases,  on the earth and the
other planet.  The astronaut’s mass m is the same on both planets.  The two formulas apply to each case.  For the weights we see
that the ratio of the weights equals the ratio of the g values.

W1 = m g1 and W2 = m g2
Dividing

W2

W1
=

g2

g1

Similarly for g we see:

g1 = G
M1

R1
2

and g2 = G
M2

R2
2 Dividing

g2

g1
=

M2 /M1

(R2 /R1)2

Take case 2 to be the new planet and case 1 the earth.

W2

W1
=

M2 /M1

(R2 /R1)2
⟹

W

WE
=

M /ME

(R /RE)2
=

5

22

We can solve for the result.

W =
5

22
WE =

5

22
×120lb = 150lb

The Cavendish Experiment
Newton published his theory of universal gravitation in 1687. The value of G  was not known at the time; it was not measured until more

than a  century  later  in  1798 by Henry  Cavendish.  Because  spherical  masses  behave the  same as  point  masses,  Cavendish  could  use  spherical
masses to measure G  for point masses. The experiment involved a torsion balance,  which consisted of two spherical masses m  at the end of a
light  rigid  bar.  The  bar  was  suspended  from  a  vertical  wire  at  its  center.  Under  a  small  torque,  the  balance  would  rotate  and  the  amount  of
rotation was proportional to the torque; τ = κθ, where the constant of proportionality κ could be measured. Two larger spherical masses M were
placed, as shown, and that small gravitational force between m  an M  caused a slight rotation. The small angle of rotation, gave the torque and
that then gave the magnitude of the gravitational force.
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The Cavendish torsion balance viewed from above. At the left is the torsion balance with two smaller       
spherical masses and at the right is the same torsion balance rotated after two larger masses are placed.

Although Cavendish is credited with measuring G for the first time, in reality what he did was find the density and mass of the Earth. Since
g = GMearth Rearth

2 , measuring the mass of the earth was equivalent to measuring G. The notation we use in writing the gravitational force using
the constant G is relatively modern and was not introduced until around 1873.

L.2 - Energy Considerations

Potential Energy of Two Masses

We  have  an  expression  for  gravitational  potential  energy  in  the  case  of  a  uniform  gravitational  field  g:  U = m g y,  where  positive-y  is
upward and U = 0 is defined where we choose y to be zero. We want an expression for the potential energy for two masses m and M separated by
a distance r. We want it to depend on those three variables m, M and r. The force is G M mr2, but work and energy are dimensionally a force
times a distance. The only relevant distance is the distance r, so to get something with the units of energy we can write G M m /r. We want the
energy to increase as the distance r gets larger; this leads us to add a minus sign and guess an expression, that turns out to be correct. 

U(r) = -G
Mm

r
A  proper  derivation  of  this  result  requires  calculus.  With  this  expression  for  potential  energy,  we  have  chosen  the  energy  to  go  to  zero  as  r
approaches infinity.

U(∞) = 0 or more precisely lim
r→∞

U(r) = 0

U

r
ri

Ui

r f

U f

Interactive Figure - Gravitational Potential Energy between Two Masses

Potential Energy of a Configuration

Now we consider  the  case  of  several  point  masses,  m1,  m2,  ...  .   Take  the  distance  between m1  and m2  to  be  r12  and generally  ri j  as  the
distance between the ith  and jth  masses.   For two masses we have U = -G m1 m2 /r12.   For three masses  we have this  term plus energy terms
between m1 and m3, and between m2 and m3.  We get
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U = -G
m1 m2

r12
- G

m1 m3

r13
- G

m2 m3

r23
.

The general expression is 

U = -G 
i< j

mi mj

ri j
.

The sum is over all indices i and j where we insist that i < j to avoid double counting.

m1

m2

m3

r12

r13

r23

Interactive Figure - The potential energy for multiple 
point masses is found by summing over all pairs.      

Energy and Escape Speed

The total energy is the sum of the kinetic energies of all masses and the total potential energy above.  For a single mass m moving in  the
presence of a large mass M the total mechanical energy is

E = K + U =
1

2
mv2 - G

Mm

r
.

The potential energy is negative, going to zero at infinity.  To escape the gravitational pull of M, m must have enough energy to reach infinity, or
zero energy.

The escape speed is the critical speed needed to escape the gravity of a planet from the surface of the planet of mass M and radius R.  This
becomes

0 = E =
1

2
mvesc

2 - G
Mm

R
.

Solving for the escape speed we get

vesc =
2GM

R
.

Example L.3 - Rocket Launched off a Spherical Planet

A rocket  is  launched  off  the  surface  of  a  spherical  planet  of  mass  M  and  radius  R  with  a  speed  v0  in  a  vertical  (perpendicular  to  the
surface) direction.

(a) If the speed v0 is less than the escape speed, the rocket will reach some maximum distance from the center rmax and fall back.  What
is rmax?

Solution

E =
1

2
mv2 - G

Mm

r
m is the rocket’s mass.  It must scale out of the problem.  Take the initial position to be at the surface and the final to be at rmax.
The final kinetic energy is zero.
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Ei = Ef ⟹
1

2
mv0

2 - G
Mm

R
= 0 - G

Mm

rmax
⟹ rmax =

1

R
-

v0
2

2GM

-1

(b)  For rocket speeds greater than the escape speed, the rocket will  continue to infinity and still  have kinetic energy.  What is v∞,  the
speed at infinity?  (To be precise, this should be discussed in terms of limits: as r → ∞, v → v∞.)

Solution
The expression for the energy is the same as is the initial values.  The final potential energy is now zero.

Ei = Ef ⟹
1

2
mv0

2 - G
Mm

R
=

1

2
mv∞2 + 0 ⟹ v∞ = v0

2 - 2 G
M

R

Note that this can be written as  v∞ = v0
2 - vesc

2 .

L.3 - Orbits

Circular Orbits

M

F=G
m M

r2

m

R

r
h

We  will  now  consider  circular  orbits  of  a  satellite  of  mass  m  orbiting  a  much  larger  mass  M,   m ≪ M.   Take  the  larger  object  to  be  a
spherical body of radius R. If the satellite orbits at a height h above the surface, then the radius of the orbit is

r = R +h.

We now apply the second law to the satellite.  The only force is gravity and the acceleration is centripetal.  We get:

Fnet,c = mac ⟹ G
Mm

r2
= mac.

In  this  expression  the  satellite  mass  cancels;  this  is  the  essence  of  weightlessness.   Suppose  one  studies  the  orbit  of  the  international  space
station,  then  m  is  the  station's  mass.  If  an  astronaut  is  floating  in  the  station  and  not  touching  anything,  then  m  is  the  astronaut's  mass.  The
cancellation of m implies that the astronaut and station have the same orbit; he will float relative to the station.

After canceling the masses we can then use the two expressions for the centripetal acceleration for uniform circular motion.  This gives a
pair of expressions, one that relates the speed and radius and the other relating the period and radius.

G
M

r2
= ac =

v2

r

 2 π
T
2 r

Solving these expressions for the speed and period gives.

v =
GM

r

T2 =
4 π2

GM
r3

Example L.4 - Low-earth Orbit

On a planet without an atmosphere, it is possible to orbit just above the surface.  For the earth the orbit must be above the atmosphere.
Although the atmosphere gets less dense with the height above the surface, there is a point where the drag is small enough for an orbit.
Consider a low earth orbit to be 200 km (about 120 mi) above the surface.
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On a planet without an atmosphere, it is possible to orbit just above the surface.  For the earth the orbit must be above the atmosphere.
Although the atmosphere gets less dense with the height above the surface, there is a point where the drag is small enough for an orbit.
Consider a low earth orbit to be 200 km (about 120 mi) above the surface.

What are the period and speed of this low-earth orbit?

Solution

Rearth = 6.38×106 m , Mearth = 5.97×1024 kg

h = 200 km = 2.0×105 m ⟹ r = Rearth + h = 6.58×106 m

T2 =
4 π2

G Mearth
r3 ⟹ T = 5310 s = 89 min

Low-earth orbits can be higher but the height should not be much larger.  These will have slightly longer periods, but low-earth
orbits are close to 90 minutes.

v =
G Mearth

r
= 7780 m /s

Example L.5 - Geostationary Orbit

It  is  useful  for  communication  satellites,  weather  satellites  and  spy  satellites  to  maintain  a  fixed  position  in  the  sky  relative  to  the
rotating earth.  This is called a geostationary orbit.  This requires an orbit directly over the equator with a period of 24 h.

(a)  Take  the  period  of  a  low-earth  orbit  to  be  1.5  hours  and  the  orbital  radius  to  be  the  earth’s  radius,  RE.   Estimate  the  radius  of  a
geostationary orbit as a multiple of RE.

Solution

T2 =
4 π2

G M
r3

We will use ratios to solve this, as we did in Example-L.2.  We will use the period equation above for two cases: r1 = RE  with
T1 = 1.5 h and find the unknown r2 with T2 = 24 h.  M = Mearth for both cases.

T1
2 =

4 π2

G Mearth
r1

3 and T2
2 =

4 π2

G Mearth
r2

3
Dividing

T2

T1

2

=
r2

r1

3

r2 =
T2

T1

2/3

r1 ≃
24 h

1.5 h

2/3

RE = 162/3 RE ⟹ r2 ≃ 6.4 RE

(b)   Calculate  this  geostationary  orbital  radius  precisely.   While  we  are  being  precise,  the  orbital  period  is  not  one  solar  day  but  one
sidereal day 23.93 h.  (Note that a sidereal day is the time it takes for the earth to rotate once relative to the distant stars, as opposed to
relative  to  the  sun.   There  are  365.24  solar  days  in  a  year  but,  with  one  extra  rotation  relative  to  the  distant  stars,  there  are  366.24
sidereal days in a year.)

Solution

T2 =
4 π2

G Mearth
r3 ⟹ r = G Mearth

T2

4 π2

1/3

r = 6.673×10-11
N ·m2

kg2
5.97×1024 kg

(23.93×3600 s)2

4 π2

1/3

= 4.22×107 m

Compare this with the radius of the earth.

Rearth = 6.38×106 m ⟹ r = 6.61 Rearth

Kepler's Laws

Kepler  came after  both Copernicus and Galileo,  and came before Newton.  Kepler  used data  taken by someone else,  Tycho Brahe,  of  the
positions of the planets in the sky as functions of time. From this he realized that the circular orbits of Copernicus and Galileo could not fit the
data. He settled on elliptical orbits and summarized his results with three laws.

After Kepler, Newton found his three laws of motion and his law of universal gravitation. He was able to derive Kepler's three law from his
work.  This  was  a  remarkable  feat.  He  was  also  able  to  prove  that  Kepler's  laws  implied  that  the  gravitational  force  law had  to  be  an  inverse
square law.
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After Kepler, Newton found his three laws of motion and his law of universal gravitation. He was able to derive Kepler's three law from his
work.  This  was  a  remarkable  feat.  He  was  also  able  to  prove  that  Kepler's  laws  implied  that  the  gravitational  force  law had  to  be  an  inverse
square law.

Kepler's First Law  -  Planets move in elliptical orbits about the sun, which is at a focal point of the ellipse.
Given two points, called focal points, an ellipse is the set of points in a plane such that the sum of the two distances from each focus is a

constant.

2 a

2 c

2 b
focus focus

r1+ r2=2 a

r1
r2

c= e a
b=a 1-e2

Interactive Figure

a is called the semimajor axis; it is half the largest distance between two points on the ellipse.  The other dimension of the ellipse is the minor
axis 2b.   Each focus is a distance of c  from the center, where c = e a,  with e  known as the eccentricity.  The eccentricity is the deviation from
being a circle, 0 ≤ e < 1.  e = 0 is the circular case, where the two foci merge and a = b. As e approaches one, the ellipse approaches a parabola.
Proving Kepler’s first law is not that difficult, but is a bit beyond the traditional scope of this course.

Kepler's Second Law  -  The radial vector from the sun to the planet sweeps out equal areas in equal time.

Sun

Interactive Figure - The time to sweep out the gray area stays constant.

Kepler’s second law describes how fast a planet moves in its orbit; when near the sun it moves rapidly and and far away it moves slowly. It
sweeps out equal areas in equal time. This is a simple consequence of the conservation of angular momentum.
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ΔA
r vΔt

θ

Sun

The area of a parallelogram formed by two vectors A and B is A B sin θ. In a small time Δt  a planet moves vΔt. This traces out a triangle; this
triangle is half a parallelogram and thus has the small area

ΔA =
1

2
r v Δt sin θ

Since L = r p sin θ is constant, it follows that ⅆA /ⅆ t is constant.

lim
Δt→0

ΔA

Δt
=

1

2
r v sin θ =

1

2 m
r p sin θ =

L

2 m
= constant.

This demonstrates the result.

Kepler's Third Law  -  Period2 ∝ (Semimajor axis)3   or    T2 ∝ a3

Define the major axis as the largest distance between two points on an elliptical orbit.  The semimajor axis, a,  is half this.  For a circular
orbit, this is the same as the radius a = r.  We saw that T2 ∝ r3 for a circular orbit.  The third law is then a generalization of this result, which we
will not prove.

T2 =
4 π2

G M
a3.

2 a
2 a

2 a
2 a

Sun

e=0
e=0 .3

e=0 .6
e=0 .9

Different orbits with varying eccentricities. The semimajor axis and thus the period stay the same.
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