
Chapter M

Oscillatory Motion
Blinn College - Physics 1401 - Terry Honan

M.1 - Simple Harmonic Motion

The Mass-Spring System
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Consider  a  mass  sliding  without  friction  on  a  horizontal  surface.   The  force  of  a  spring  is  given  by  Hooke's  law  F = -k x.   Applying
Newton's second law gives:

Fnet = m a ⟹ -k x = m a

Define the angular frequency by

ω =
k

m
.

This gives a simple relation between the acceleration a and the position x.

a = -ω2 x
We will see that this is a quite common expression that occurs in situations that give oscillatory motion.

General Simple Harmonic Motion and Uniform Circular Motion

Whenever the motion of a particle is described by an equation of the form a = -ω2 x,  we get what is called simple harmonic motion. The
mass/spring system is our primary example of simple harmonic motion but we will see other examples this chapter. To solve this equation for
the  position  as  a  function  of  time  x(t),  we  note  the  similarity  of  this  to  uniform  circular  motion.  When  a  particle  moves  in  uniform  circular
motion of radius r there is a centripetal acceleration of magnitude ω2 r. Choose the origin to be the center of the circle; the position vector r  is
radial and since the acceleration is centripetal it is oppose that. With uniform circular motion the particle moves with a constant angular velocity
and we get

θ(t) = θ0 + ω t
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It follows then, that a = -ω2 r. If we look at one component of this vector expression we get

ax = -ω2 x

The x-component of the position vector r is x = r cos θ. This gives

x(t) = r cos(ω t + θ0)

Since the ax and x in ax = -ω2 x is the sames as between ax and x in the original expression for simple harmonic motion, a = -ω2 x, we can write
the solution for x(t) for simple harmonic motion. We will rename the radius r as A, the amplitude of the simple harmonic motion and rename the
θ0 as ϕ, the phase angle.

x(t) = A cos(ω t + ϕ)

The interactive diagram shows how uniform circular motion is  related to simple harmonic motion.  If  we consider just  the x-component of the
circular  motion  then  that  corresponds  to  a  particle  in  simple  harmonic  motion.  Note  in  the  diagram below the  axes  are  rotated  to  clarify  this
connection.
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x(t) = A cos(ωt+ϕ)

A cos(ωt+ϕ)

The amplitude  A  is  the  largest  distance  of  the  particle  from its  equilibrium position.  The  angular  velocity  of  the  circular  motion  becomes  the
angular frequency of simple harmonic motion. The simple harmonic motion repeats itself every period T. Since the cosine function repeats itself
every 2 π radians, it follows that ωT = 2 π and the angular frequency is related to the period just as the angular velocity is to the period

ω =
2 π

T
The frequency is the number of cycles per time; since the time per cycle is the period we get  f = 1 /T.  Combining this gives

T =
1

f
=

2 π

ω
and f =

1

T
=

ω

2 π
.

The phase angle ϕ describes where in the periodic function the motion begins; changing ϕ shifts the graph along the time axis.
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M.2 - Energy Considerations

The Energy of a Mass-Spring System

The total energy is the sum of kinetic and potential energies.  When the mass is at the turning points x = ±A, its speed is zero; we can then
write E = (1 /2) k A2.  When it passes the equilibrium point x = 0 the potential energy is zero and thus its kinetic energy is the maximum; so must
the speed be its maximum, v = ±vmax.  This allows us to write the energy with two equivalent forms for the total energy.

E =
1

2
m v2 +

1

2
k x2 = 

1
2

k A2

1
2

m vmax
2

Equating the two expressions for the total energy gives an expression for the maximum speed in terms of the amplitude.

vmax =
k

m
A = ω A

Speed and Position for General Simple Harmonic Motion

For general simple harmonic motion we have

x(t) = A cos(ω t + ϕ)

The velocity becomes.

v(t) = -ω A sin(ω t + ϕ)

Since both sine and cosine vary between ±1 we can identify the maximum speed as

vmax = ω A.

This is equivalent to what we had for the mass-spring case.  The point here is to show that this is generally true.  If the mass-spring energy is
written in terms of the amplitude A then we can solve for v and, using the mass-spring value of ω, get

v = ±ω A2 - x2 .
This  expression  is  also  generally  true  for  simple  harmonic  motion.  To  verify  that  generally,  we  can  write  cos(ω t + ϕ) = x /A  and
sin(ω t + ϕ) = -v / (ω A).  Using cos2 + sin2 = 1  we can get the result.

Example M.1 - Simple Harmonic Motion

A particle moves in simple harmonic motion with a frequency of 13 Hz.  At t = 0 the particle is  released from rest  from a distance of
2.4 cm from equilibrium.

(a) What is the maximum speed and maximum acceleration of the particle?
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Solution
Since the particle is released from rest the amplitude is the initial distance from equilibrium. 

A = 2.4 cm = 0.024 m

The angular frequency ω is related to the frequency f.

f = 13 Hz ⟹ ω= 2 π f = 81.681 s-1

The maximum speed can now be found.

vmax = ω A = 1.96 m /s

Since the acceleration is the second time-derivative of the position the acceleration follows from the differential equation.

a = -ω2 x
The magnitude of the maximum acceleration occurs at the largest value of x, which is the amplitude A.

amax = ω2 A = 160. ms2

(b) At t = 0.22 s, what are the position, velocity and acceleration of the particle?

Solution
Since at time zero the particle is at its maximum displacement we can conclude that the phase angle ϕ is zero.

x(t) = A cos(ω t + ϕ) = A cos(ω t)

Taking derivatives gives us the velocity and acceleration.

v(t) = -ω A sin(ω t) and a(t) = -ω2 x = -ω2 A cos(ω t)
At  t0 = 0.22 s we get

x(t0) = 0.0153 m , v(t0) = 1.51 m /s and a(t0) = -102 ms2

(c) When the particle is  1.7 cm from equilibrium, then what are the speed and the magnitude of the acceleration of the particle?

Solution
The distance from equilibrium is x.

x = 1.7 cm = 0.017 m

The speed is v.

v = ω A2 - x2 = 1.38 m /s
From the discussion in part (a) we get the magnitude of the acceleration.

a = ω2 x = 113 ms2

M.3 - The Vertical Mass-Spring
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Interactive Figure

When a mass hangs from a spring we meed to add the effect of gravity.  As before, the second law gives our differential equation.

Fnet = m a ⟹ -k x + m g = m a

The equilibrium position of this is when the forces cancel Fnet = 0.  This gives

k xeq = m g.

We can redefine our coordinates relative to the new equilibrium position.

x = x′ + xeq

If we insert this into our  equation we get

-k x′ = m a′.

Here we have used the value of xeq and shifting the x-coordinate does not affect the acceleration, we have a = a′.

The interpretation of the above expression is simple.  The effect of gravity is trivial.  It just shifts the equilibrium position and we end up
with simple harmonic motion about the new equilibrium position.

Example M.2 - Vertical Mass/Spring System

When a mass is hung from a vertical spring, the spring stretches by 8.5 cm.  What is the period of oscillation of this system?

Solution
xeq = 8.5 cm = 0.085 m

When  hanging  in  equilibrium  there  are  two  forces  acting  on  the  mass,  the  spring  force  k xeq  acting  upward  and  gravity
downward. We do not know the mass m but we will see that it cancels; solve for k in terms of m.

k xeq = m g ⟹ k =
m g

xeq

From the angular frequency we can find the period.

ω =
k

m
=

m g /xeq

m
=

g

xeq
⟹ T =

2 π

ω
= 2 π

xeq

g
= 0.585 s

M.4 - The Physical and the Simple Pendulum

The Physical Pendulum
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Consider a rigid body rotating without friction about an axis. The center of mass is a distance d from the axis.  At equilibrium, the center of
mass will hang below the center.  Take the angle θ to be the angle of the line from the axis to the center of mass measured from vertical; note that
θ = 0 is the equilibrium position.  The only nonzero torque acting on the rigid body is the torque due to gravity.  This is

τnet = τgrav = -m g d sin θ.

The  direction  of  positive  θ  gives  our  sign  convention  for  torque.   The  reason  for  the  minus  sign  in  the  above  expression  is  the  torque  tends
toward smaller angles.  The rotational second law gives the expression.

τnet = I α ⟹ -m g d sin θ = I α ⟹ α= -
m g d

I
sin θ

If we define 

ω =
m g d

I

then we get an expression of the form

α = -ω2 sin θ.
The relation between α and θ in this expression is the same as that between a and x. This is almost of the form of our simple harmonic motion
equation  a = -ω2 x, except for the sine function.  If we consider small angles then we get

sin θ ≃ θ for small θ in radians

α = -ω2 θ.
We can then conclude that for small amplitude oscillations we have simple harmonic motion with an angular frequency ω given by the expres-
sion above.

-
π

2

π

2

θ

-1

1

u

u= sin θ

u=θ
θ in degrees θ in radians sin θ

1 0.0174533 0.0174524
2 0.0349066 0.0348995
5 0.0872665 0.0871557

10 0.174533 0.173648
20 0.349066 0.34202
30 0.523599 0.5
45 0.785398 0.707107
60 1.0472 0.866025
90 1.5708 1.

For small angles in radians, the sine of the angle is approximately equal to the angle 
in radians. This is shown with a graph on the left and with a table on the right.            

Example M.3 - Physical Pendulum

A uniform disk with a radius of 20 cm swings without friction about a perpendicular axis through the rim. What is its period of small
oscillations?
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Solution
From out table of moments of inertia we get

I =
3

2
m R2

The mass m is not given but will cancel. We are given the radius and need the value for g. The value of d, the distance from the
center to the axis is half the radius

g = 9.80
m

s
, d = R = 20 cm = 0.20 m

The distance from the axis to the center of mass is d = R /2. The period can then be found from the angular frequency.

ω =
m g d

I
⟹ T =

2 π

ω
= 2 π

3
2

m R2

m g R
= 2 π

3 R

2 g
= 1.10 s

The Simple Pendulum

The simple pendulum is a special case of the physical pendulum.  It is the case where all the mass m is located at a point, the pendulum bob.
If the bob is on the end of a string of length L then we get

d = L and I = m L2.
Solving for ω we get

ω =
g

L
.

Example M.4 - Texas A&M’s Foucault Pendulum

A Foucault Pendulum is a pendulum that precesses slowly in a circular path illustrating the earth’s rotation underneath; this is due to the
earth’s Coriolis forces briefly mentioned in Chapter E.  The George P. Mitchell Physics Building at Texas A&M University has a large
Foucault Pendulum with a period of 10.32 s.  What is the length of this pendulum?

Solution

ω =
g

L
⟹ T =

2 π

ω
= 2 π

L

g
⟹ L = g

T

2 π

2
= 26.4 m
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