
Chapter N

Waves and Sound
Blinn College - Physics 1401 - Terry Honan

N.1 - Mechanical Waves

A mechanical  wave  is  a  disturbance  in  a  medium that  propagates  through  the  medium.  A wave  carries  energy  as  it  propagates.  We will
generically  label  this  disturbance  by  u.  Consider  a  stretched  string.  Take  x  to  be  the  position  along  the  string  and  t  is  time.  The  equilibrium
position  of  the  string  is  its  relaxed  position.  The  disturbance  y  (u = y  for  a  string)  is  the  perpendicular  distance  of  a  point  on  the  string  from
equilibrium. When a pulse is put in the string it maintains its shape and travels the length of the string at a fixed speed of v = FT / μ , where FT

is the tension in the string and μ is the linear density of the string, its mass per length.
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Interactive Figure

A wave is said to be transverse when the direction of the disturbance is perpendicular to the direction of propagation. Waves on a string are
examples of transverse waves. Electromagnetic waves are also transverse; in the electromagnetic case the disturbance is the electric field, which
is  perpendicular  to  the  direction  of  propagation.   Note  that  electromagnetic  waves  are  not  mechanical  waves;  there  is  no  medium  and  it  can
propagate in a vacuum. There is a plane of possible directions perpendicular to a direction of propagation. Choosing such a direction is choosing
a polarization.  Transverse waves can be polarized.

Now consider a stretched spring. As with the string, perpendicular pulse can also be put into this stretched spring and that will propagate as
a transverse wave. If a compression pulse is put into the spring then that pulse will also propagate as a wave. Here a point on the spring moves
back and forth a distance u  from equilibrium but parallel to the direction of propagation x.  When the disturbance is parallel to the direction of
propagation we call the wave longitudinal.  Longitudinal waves cannot be polarized.

Another  example  of  a  longitudinal  wave  is  sound  in  a  fluid.   Here  the  molecules  move  back  and  forth  parallel  to  the  direction  of  wave
propagation.  We can view the disturbance of sound waves either in terms of displacement or in terms of pressure.  Sound waves travel at the
speed of sound.  This varies with temperature; at 20 °C it is 343 m/s

Wave Type Disturbance - u Transverse or
Longitudinal Wave Speed

Waves on a string u = y(x, t) Transverse v = FT

μ

Electromagnetic
Waves

u = E
= Electric field Transverse

v = c
= 3.00×108 m

s
Compression

Waves on a Spring u = Parallel disp. Longitudinal no formula given

Sound Waves
in a Fluid

u = Pressure or
u = Displacement Longitudinal

v = vsound

= 343 m
s
(in air)



N.2 - Waves in One Dimension

Left- and Right-moving Pulses

Consider one-dimensional wave with a disturbance u(x, t) of the following form

u(x, t) = f (x - v t) + g(x + v t),

where f and g are arbitrary functions. To understand this, consider the function  u(x) = f (x). If we shift this by a in the positive direction we get
u(x) = f (x - a).

a
a

x

u u = f (x) u = f (x-a)

We  can  now  see  that  u(x, t) = f (x - v t)  describes  a  pulse  of  arbitrary  shape   u(x) = f (x)  moving  in  the  positive  direction  with  speed  v.
u(x, t) = g(x + v t) corresponds to a pulse of a different arbitrary shape moving in the opposite direction at the same speed.

Sinusoidal Waves
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Interactive Figure

We often consider waves where the shape of the pulse f (or g) are sinusoidal.

f (x) = A cos(k x)

A is called the amplitude. k is called the wave number; this is related to the wavelength λ, which is the spatial period of the function. Since the
period of sine is 2 π and the period of the function f is λ we get  k λ = 2 π or

k =
2 π

λ
.

If we take this function f and move it in the positive or negative direction we get f (x ∓ v t) = A cos[k (x ∓ v t)] or

u(x, t) = A cos(k x ∓ ω t),
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where the angular frequency ω and wave number are related to the wave speed by k v = ω.

If we choose some point on the string x0 then at that position moves as 

A cos(ω t + ϕ).

This is our expression for simple harmonic motion.  Since the angular frequency is related to the frequency by ω = 2 π f  the wave speed can also
be written in terms of the frequency and wavelength.

v =
ω

k
= f λ

Dispersion and Generalized Waves

With  the  wave  examples  we  are  discussing  in  this  chapter,  the  wave  speed  is  independent  of  frequency.  More  generally,  we  can  have
different  physical  situations  which  are  described  by  similar  mathematics  where  we  still  get  sinusoidal  waves.  These  generalized  waves  are
dispersive,  meaning that  different  frequency waves will  have different  speeds.  Although we have sinusoidal  waves,  we no longer have simple
pulses that maintain their shape as solutions. If we begin with a pulse then the pulse will spread out with time.

Light in a vacuum is a three-dimensional wave that is not dispersive. Light passing through a medium does have dispersion. A consequence
of different frequencies, colors, having different speeds is the splitting of light into its spectrum by a prism.

Another example of dispersive waves is surface water waves; these, it turns out, are a mixture of longitudinal and transverse displacements.
In quantum mechanics matter waves are dispersive.

N.3 - Waves on a String and Power

A rope or a string can be described as having a linear density μ. This is the mass per length of the rope or string.

μ =
m

L
=

mass

length
(linear density)

A heavy rope has a large linear density and a light string has a small one. Along a rope of string the tension will stay constant. We will use FT  to
denote tension, instead of just T  to avoid confusion with the period of harmonic motion, which recall is related to the frequency T = 1 / f .  The
speed of waves on a string can be shown to be

v =
FT

μ
.

Waves carry energy. When a sinusoidal wave travels down a string the flow of energy is constant.  If some quantity of energy flows in a
time then the energy per time or power is constant.  Now consider some point on the string.  If the wave is moving in some direction at the speed
v, then the energy moves past the point at the same rate.  In a small time Δt all the energy in an small segment of width Δx = v Δt will pass the
point.

The energy of a particle in simple harmonic motion satisfies

E =
1

2
m vmax

2

Since a point on the string moves in simple harmonic motion we can apply this formula to Δx.  The small mass of the segment is 

Δm = μ Δx = μ v Δt

and the small energy in the segment is

ΔE =
1

2
Δm vmax

2 =
1

2
μ v Δt vmax

2 .

The power is given by 𝒫 = ΔE /Δt.  The maximum speed of a point in simple harmonic motion is vmax = ω A.  It follow that the power travelling
down a string due to a sinusoidal wave is

𝒫 =
1

2
μ A2 ω2 v.
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Example N.1 - Waves on a Steel Wire

A wave of the form 

y(x, t) = (0.020 m) sin105 s-1t + 3.0 m-1x

travels down a steel wire with a linear density of  0.014226 kg /m. 

(a) What are the frequency and wavelength of the wave?  Also, what is the wave speed and what is the direction of the wave?

Solution
From the form of the function we can read off the amplitude A, the angular frequency ω and wave number k.  Also, the linear
density μ is given.

A = 0.020 m , ω = 105 s-1, k = 3.0 m-1 and μ = 0.014226 kg /m
The frequency, wavelength and speed follow from formulas for sinusoidal waves.

f =
ω

2 π
= 16.7 Hz, λ =

2 π

k
= 2.09 m and v =

ω

k
= 35

m

s
= f λ

The solution for a pulse is f (x ∓ v t), where the negative sign means the pulse is moving in the positive-x direction and positive
implies  the  negative-x  direction.   Since  the  relative  sign  between  ω t  and  k x  terms  is  positive,  the  wave  is  moving  in  the
negative-x direction.

(b) What is the maximum speed of a point on the wire as the wave passes.

Solution
A point on a string (or wire) moves in simple harmonic motion as a sinusoidal wave passes.  The maximum speed for simple
harmonic motion is 

vmax = ω A = 2.1 m /s .

Note that the wave speed is quite distinct from the speed of a point on the wire.

(c)   What is the tension in the wire?

Solution
The tension in the wire can be found from the wave speed v and the linear density μ.

v =
FT

μ
⟹ FT = μ v2 = 17.4 N

(d) At what rate does energy flow down the wire?

Solution
The rate of energy flow is the power.  Note that v is the wave speed.

𝒫 =
1

2
μ A2 ω2 v = 1.10 W

N.4 - Waves in Three Dimensions

Plane Waves and Spherical Waves
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In three dimensions we define a surface of constant phase, typically the crest of the wave, to be a wave front.  An important notion is that of
a plane wave; take the wave to move in the positive x-direction with the disturbance u being uniform along the yz-plane.  This turns our distur-
bance from a genuinely three dimensional function u(x, y, z, t) into being a function of only x, spatially.  

u(x, t) = A cos(k x - ω t) (Plane Wave)

Wave fronts correspond to planes parallel to the yz-plane, separated by one wavelength and moving in the positive x-direction at speed v.

A point source produces a spherical wave.  We can write the disturbance u as a function of r, the distance form the source and time t.

u(r, t) = A(r) cos(k r - ω t) (Spherical Wave)

The wave fronts are concentric spheres separated by λ.  The waves fronts move away from the source at the speed v.

Intensity

We saw in the discussion of waves on a string that the average power transmitted down the string was proportional to the wave amplitude
squared,  𝒫ave ∝ Amplitude2.   For  a  wave  that  moves  though  three  dimensions,  what  is  analogous  to  power  in  the  string  case  is  the  intensity,
which we define as power per area.

I =
𝒫ave

A
=

Eave

A Δt
Intensity =

Power

Area
=

Average Energy

Area× time
The intensity will always be proportional to the amplitude squared.

With a plane wave the area stays uniform so the intensity is uniform.  For a spherical wave the relevant area is the surface area of a sphere,
where A = 4 π r2.  It follows that the intensity varies with r, the distance form the source, by an inverse square law.

I =
𝒫ave

4 π r2

𝒫ave is the total power output of the source, the rate at which it emits energy.

Sound Waves in a Fluid

Displacement and Pressure
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We now consider sound waves in a fluid (a liquid or a gas.)  Our one-dimensional model consists of a plane wave, which is three dimen-
sional but where nothing varies along the yz-plane, so it is a function of the one spatial variable x.  Alternatively, we can describe it as a fluid in a
pipe with frictionless walls, making the cross-sectional area A unimportant.  

We may view sound waves in a fluid as pressure waves or as displacement waves.  Consider the motion of particles (molecules) relative to
their  equilibrium positions in a fluid.   The displacement s  is  the position of particles relative to their  equilibrium position.   In our one-dimen-
sional model s(x, t) is the longitudinal displacement of particles as a function of position x and time t.  Longitudinal means that the displacement
is along the direction of propagation, the ± x direction.  Similarly, we can write the pressure as a function of x and t, P(x, t).  By pressure P we
mean  the  gauge  pressure,  which  is  the  difference  between  Pabsolute,  the  absolute  pressure,  and  P0, the  atmospheric  pressure  or  the  ambient
pressure in the fluid.  Although the absolute pressure cannot be negative, the gauge pressure P can.

P = Pgauge = Pabsolute - P0

Intensity and Sound Level

We can perceive sound over a wide range of intensities; this makes a logarithmic scale convenient for measuring loudness.  We will call our
measure of loudness β, the sound level, and measure it in decibels dB.  If we define

I0 = 10-12
W

m2

as the threshold of hearing, then we can define the sound level (or decibel level) β, in dB, by:

β = (10 dB) log
I

I0
.

Example N.2 - A Very Loud Loudspeaker

At a distance of  6 m from the only speaker at  a  concert,  the sound level  is  110 dB. At this  very high sound level,  one can experience
hearing loss in a few minutes. Assume the speaker produces isotropic sound. (Isotropic means the same in all directions. It implies the
wave is a spherical wave from a point source.)

(a) What is the intensity I of the sound at that 6 m position?

Solution

Here we are given β = 110 dB. We will also need the value of the threshold of hearing I0 = 10-12 Wm2.

110 dB = (10 dB) log
I

I0
⟹ 11 = log

I

I0
⟹ 1011 =

I

I0
⟹ I = 1011 I0 = 1011×10-12

W

m2
= 0.1

W

m2

(b) What is the average power of sound produced by the source?

Solution
We are given the distance from the source r.

r = 6 m and I = 0.1
W

m2
=

𝒫ave

4 π r2
⟹ 𝒫ave = 4 π r2 I ⩵ 452.4 m2 I = 45.2 W
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The Doppler Effect and Shock Waves

When a train is moving toward you with its whistle blowing the observed pitch of the whistle, its frequency, increases.  When moving away
its pitch decreases.  This is known as the Doppler effect; it is a general property of waves but we will discuss it in the context of sound waves.
Take the speed of sound to be v; this is the speed of sound with respect to the stationary atmosphere.  Consider vs  and vo  to be the approaching
velocities of the source, producing the sound, and the observer, listening to it.  By “approaching velocities” we mean we will take their signs to
be positive when moving toward the other. If the source or observer is moving away from the other, we will take the sign of its velocity to be
negative.

vs

vo

f ′=
v + vo

v - vs
f

λ′

Interactive Figure - The Doppler Effect: v is the wave speed and f is its frequency; 
f ′ is the frequency heard by the observer. vs is the source velocity and                  
vo is the observer velocity. Both are positive when moving toward the other.           

λ′  is  the  wavelength  as  heard  by  the  observer.  The  wavelength  at  the  observer  λ′  is  the  distance  between  wave  fronts;  it  is  smaller  than
λ = v / f  by vs T, λ′ = λ - vs T, where T = 1 / f  is the period.  λ′  is smaller since the second wavefront left the source after it moved vs T  after the
first  wavefront  left  the  source.  The wave moves at  speed v  relative  to  the  stationary atmosphere,  so  relative  to  the  moving observer  the  wave
speed is v + vo.

λ′ = λ - vs T =
v

f
-

vs

f
=

v - vs

f
and v′ = v + vo

Combining these two expressions we can find the wave frequency as heard by the observer.

f ′ =
v′

λ′
=

v + vo

(v - vs) / f
=

v + vo

v - vs
f

When the source travels faster than the speed of sound, the wave fronts meet to form a conical shock wave trailing the source.  This shock
wave  is  the  sonic  boom from a  supersonic  jet.  Another  example  is  the  wedge-shaped  wake  behind  a  boat;  the  boat  is  moving  faster  than  the
surface water waves to create a shock wave.   The angle of the shock wave behind the source is  called the Mach angle,  θMach.   In a time t  the
spherical wave front moves by v t  and the source moves by vs t ; the Mach angle is found by simple trigonometry.

sin θMach =
v

vs

vs

vt

vst

θMach

Example N.3 - A Train Whistle

A car drives on a road parallel to and near train tracks. The train blows its whistle with a frequency of 720 Hz. Take the speed of the
train  to  be  42 m /s  (approximately  95 mi /h)  and  the  speed  of  the  car  to  be  29 m /s  (approximately  65 mi /h).  The  speed  of  sound  is
343 m /s.
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(a) If the car is driving toward the approaching train, then what is the frequency heard by the car’s driver?

Solution
The train is the source with vs = ±42 m /s and the car is the observer with vo = ±29 m /s. The convention being used here is the
signs  are  positive  when  the  velocity  is  toward  the  other.  That  is:  vs > 0  when  the  source  is  moving  toward  the  observer  and
vo > 0 when the observer is moving toward the source. The frequency of the source is f and the speed of sound is v.

f = 720 Hz and v = 343 m /s

The train is moving toward the car so vs > 0 and the car is moving toward the train, so vo > 0. Use the expression for the Doppler
effect to find the frequency heard by the car f ′.

vs = +42
m

s
and v0 = +29

m

s
⟹ f ′ =

v + vo

v - vs
f = 890 Hz

(b) For part (a), what is the frequency heard by the car’s driver after the train passes and is receding?

Solution
Now both the train and car are moving away from each other, so vs < 0 and vo < 0. 

vs = -42
m

s
and v0 = -29

m

s
⟹ f ′ =

v + vo

v - vs
f = 587 Hz

(c) If the car is driving away from the approaching train, then what is the frequency heard by the car’s driver?

Solution
The train is now moving toward the car so vs > 0 and the car is moving away from the train, so vo < 0. 

vs = +42
m

s
and v0 = -29

m

s
⟹ f ′ =

v + vo

v - vs
f = 751 Hz

(d) For part (c), what is the frequency heard by the car’s driver after the train passes and is receding?

Solution
The train is now moving away from the car so vs < 0 and the car is moving toward the train, so vo > 0. 

vs = -42
m

s
and v0 = +29

m

s
⟹ f ′ =

v + vo

v - vs
f = 695 Hz

Example N.4 - A Hypersonic Sonic Boom

Supersonic means that something is moving faster than the speed of sound. A rocket or jet is said to be hypersonic when it moves faster
than the five times the speed of sound. What is the smallest Mach angle for a hypersonic object? (The smallest angle is when vs = 5 v)

Solution
This involves just using the formula for the Mach angle.

sin θMach =
v

vs
⟹ θMach = sin-1

v

vs
= sin-1

v

5 v
= sin-1

1

5
= 11.5 °

N.7 - Superposition

Superposition in One Dimension

For  any  waves,  including  generalized  dispersive  waves,  we  have  the  principle  of  superposition.  This  means  that  the  sum  of  two  wave
solutions  is  a  solution.  For  strings  in  one  dimension  the  only  way  that  we  can  combine  different  waves  is  if  they  are  traveling  in  opposite
directions since the general expression for waves is

u(x, t) = f (x - v t) + g(x + v t)

and two pulses moving in the same direction move at the same speed.  Suppose the f and g solutions are pulses moving toward each other.  Our
general solution shows that when a pulse moving in the positive x-direction, f (x - v t), meets a pulse moving in the opposite direction,  g(x + v t),
they add where they overlap and move off unchanged by the interaction.
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and two pulses moving in the same direction move at the same speed.  Suppose the f and g solutions are pulses moving toward each other.  Our
general solution shows that when a pulse moving in the positive x-direction, f (x - v t), meets a pulse moving in the opposite direction,  g(x + v t),
they add where they overlap and move off unchanged by the interaction.

f
g

f

g

f
g

f

g

Interactive Figure

Reflection of Waves

Reflection from a Fixed Point
If one end of a string is held fixed then a pulse will flip while being reflected.

v v

v

Interactive Figure - Reflection of a pulse from a fixed end.

Reflection from a Free End with Tension
Suppose  one  end  of  a  string  is  attached  to  a  ring  that  slides  without  friction  on  a  post.  In  this  case,  the  pulse  will  reflect  without  being

flipped.

v v

Interactive Figure - Reflection of a pulse from a free end: a ring slides on a post without friction.

Standing Waves

Standing Waves
When a mechanical system, say a mass-spring system, is driven by a periodic force it will oscillate at the driving frequency.  An extended

system,  like  a  building,  a  bridge  or  a  musical  instrument  will  have  many  natural  frequencies  of  vibration.   We  will  now  study  these  natural
frequencies for several simple cases that involve standing waves.

Chapter N - Waves and Sound| 9



When a mechanical system, say a mass-spring system, is driven by a periodic force it will oscillate at the driving frequency.  An extended
system,  like  a  building,  a  bridge  or  a  musical  instrument  will  have  many  natural  frequencies  of  vibration.   We  will  now  study  these  natural
frequencies for several simple cases that involve standing waves.

f(x-v t)=A cos(k x-ω t) g(x+v t)=A cos(k x+ω t) u(x,t)=f(x-v t)+g(x+v t)
fg

Interactive Figure

To  describe  a  standing  wave  consider  a  one-dimensional  case  with  two  sinusoidal  waves  with  the  same  amplitude  and  frequency  but
moving in opposite directions.  

u(x, t) = A cos(k x - ω t) + A cos(k x + ω t)

To add  these  two  waves  we  will  use  trig.  identities.   Start  with  the  formulas  for  cosine  of  the  sum and  difference  of  two  angles  and  add  the
results.

cos(α ± β) = cos α cos β ∓ sin α sin β ⟹ cos(α + β) + cos(α - β) = 2 cos α cos β.

Using  α = k x  and  β = ω t  we get our result.

u(x, t) = 2 A cos(k x) cos(ω t)

The  positions  where  the  disturbance  u  is  zero  at  all  times  are  called  nodes.   We  refer  to  the  positions  where  the  disturbance  has  its  largest
amplitude oscillation as antinodes.

cos(k x) = 0 ⟺ nodes

cos(k x) = ±1 ⟺ antinodes

Note that  the distance between nodes is  half  a  wavelength.   The wavelength and frequency are  the same as  for  the two left  and right  moving
sinusoidal waves, so it follows the we still have f λ = v.

Standing Waves on a String
Suppose  a  string  under  tension  is  fixed  at  either  end.   If  you  pluck  this  string  it  will  vibrate  in  a  fairly  complex  pattern.   This  complex

pattern can be understood in terms of  linear  superpositions of  some simple vibrational  modes,  called harmonics.   We will  now describe these
harmonics.

The string has tension FT  and linear density μ so the wave speed is v = FT / μ .  It is fixed at x = 0 and x = L.  We insist on a standing wave
solution  that  is  zero  at  x = 0;  to  do  this  shift  the  spatial  part  of  the  trig.  function  to  sin(k x),  since  sin 0 = 0.   Recall  that  u = y  for  a  string.  A
general expression for the standing wave becomes:

y(x, t) = ymax sin(k x) cos(ω t + ϕ)

where ymax  is  the amplitude of the resulting standing waves and not the amplitudes of the left-right moving waves in the previous subsection.
For  the  solution  to  be  zero  at  L  we  have  sin(k L) = 0.   This  implies  k L = m π.   Since  k = 2 π /λ  we  can  find  the  wavelengths  of  our  harmonic
modes.

λm =
2 L

m
where m = 1, 2, 3, ...

Let  us  get  at  this  expression  above  in  a  less  mathematical  way.   The  distance  between  nodes  of  the  resulting  standing  wave  pattern  is  half  a
wavelength.  m of these half-wavelengths fit into L,  so m λ /2 = L.

10 | Chapter N - Waves and Sound



m=3

λ/2
L

Interactive Figure - A string with both ends fixed.

The frequency follows from f λ = v.

fm = m f1 where f1 =
v

2 L
and m = 1, 2, 3, …

f1 is the fundamental frequency or the first harmonic.  The higher m values are the higher harmonics.  An instrument will always produce higher
harmonics, integer multiples of the fundamentals, but the frequencies we associate with an instrument are the fundamental frequencies.  We tune
to  correct  the  fundamental  frequencies.   When  we  tune  a  stringed  instrument  we  vary  the  tension  in  the  string,  thus  varying  the  wave  speed;
given the string’s length, we have a unique fundamental frequency for a string.  A piano has a separate string for each note, thus tuning a piano is
a very tedious procedure.  A standard guitar  has just  six strings but  the player’s  fingers moving on the frets  creates many effective lengths for
each string, producing many different notes.

Example N.5 - Guitars Strings

(a)  The first (bottom) string on a guitar, the “E” string produces a fundamental frequency of 329.63 Hz; this is known in the scientific
pitch notation as E4. If the string has a length of 66 cm and has a tension of 43.6 N. What is the linear density μ of the string?

Solution
We know the fundamental frequency f1, the length L and the tension FT .

f1 = 329.63 Hz, L = 66 cm = 0.66 m and FT = 43.6 N

From this information we can find the wave speed.

f1 =
v

2 L
⟹ v = f1 2 L = 435.11

m

s
Using the equation for the speed of waves on a string we can solve for the linear density, or mass/length, μ.

v =
FT

μ
⟹ μ =

FT

v2
= 2.30×10-4

kg

m

(b) What are the next three higher harmonic frequencies produced by this string.

Solution
The harmonics are multiples of the fundamental frequency.

f2 = 2 f1 = 659.26 Hz, f3 = 3 f1 = 988.89 Hz and f4 = 4 f1 = 1318.5 Hz

(c) The last (top) string on a guitar is also called an “E” string or “low E” string; it produces a fundamental frequency that is two octaves
lower in frequency, with scientific pitch notation E2. Each octave represents a factor of two in frequency, so E2 has 1/4 the frequency of
E4. This is 82.41 Hz. What are the next three higher harmonic frequencies produced by this string.

Solution
We know the fundamental frequency f1 and as before we want f2, f3 and f4.

f1 = 82.41 Hz ⟹ f2 = 2 f1 = 164.82 Hz, f3 = 3 f1 = 247.22 Hz and f4 = 4 f1 = 329.63 Hz

Note that the third  higher harmonic f4 for the low E string is the same as the fundamental frequency of the E string.

(d) The strings on a guitar have the same length. Suppose the same string were used for the low E string, meaning a string with the same
linear density, what tension would be needed?
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Solution

The same calculation in part (a) could be done in reverse to get the tension. Find the speed of the wave from f1 = v
2 L

 using the

same length as before and then the tension from v = FT / μ using the same μ as before. A simpler approach will show that the
tension would be 1/16 the tension in part (a). Label the new fundamental frequency, speed and tension of the low E as f1′, v′ and
FT
′ . 

f1 =
v

2 L
and f1′ =

v′

2 L
⟹

v′

v
=

f1′

f1
=

1

4
Next, write the tension in terms of the speed.

v =
FT

μ
⟹ FT = μ v2 ⟹

FT
′

FT
=

v′

v

2

=
1

16

This is a problem. With too little tension on the low E string it could not be heard or too much tension on the E string would
warp  the  guitar  or  break  the  string.  This  is  the  reason  why the  strings  get  heavier  as  you  go  higher  in  a  guitar.  By making  μ
larger you can get lower frequencies with more reasonable tensions.

Standing Sound Waves in a Pipe
We will now consider standing waves formed by sound in a pipe.  The boundary conditions at the ends of the pipe depend on whether the

end is open or closed.  At an open end the pressure P is fixed at zero at the end, since the pressure we use in our wave discussion is the gauge
pressure which is the pressure difference from that outside the pipe.  The displacement s at the end of the pipe is unconstrained.  The result is at
an open end we have a pressure node and a displacement antinode.

Open end at x0 : s(x0, t) = ±smax (antinode), P(x0, t) = 0 (node)

At a closed end of a pipe the displacement is forced to be zero, a node and the pressure is unconstrained, an antinode.

Closed end at x0 : s(x0, t) = 0 (node), P(x0, t) = ±Pmax (antinode)

When sound waves are viewed as pressure wave, the sine and cosines are swapped and that them swaps nodes and antinodes.

Now consider a pipe of length L with both ends open. From the pressure perspective there is a node at either end, just as the case of a string
with  both  ends  fixed.   The  displacement  perspective  looks  different  but  the  counting  is  still  the  same;  we  need  an  integer  number  of  half
wavelengths over the length L.

λm =
2 L

m
and fm = m f1 with f1=

v

2 L
(m = 1, 2, 3, ...)

m=3

λ/2
L

Interactive Figure - A pipe with both ends open

Now we turn to a pipe of length L with one end open and the other closed.  From the pressure perspective there is a node at the open end
and an antinode at the closed end.  The displacement point of view gives the reverse, an antinode at the open end and a node at the closed end.
To  get  the  standing  waves  to  fit  these  boundary  conditions  we  must  have  an  odd  number  of  quarter  wavelengths  spanning  the  length  L,  so
L = m λ /4 where m is odd.

λm =
4 L

m
and fm = m f1 with f1=

v

4 L
(m = 1, 3, 5, ...)
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m=5

λ/4
L

Interactive Figure - A pipe with one end closed and one open

Example N.6 - Organ Pipes

As in the previous example, refer again to the musical note E4 with a frequency of 329.63 Hz.

(a) What is the length of an organ pipe with both ends open that produces this note as its fundamental frequency.

Solution
For a pipe with both ends open, the formula relating the fundamental frequency to the length is the same as for a string except
that here v is the speed of sound.

f1 = 329.63 Hz , v = vsound = 343
m

s
and f1=

v

2 L
⟹ L =

v

2 f1
= 0.520 m

(b) What are the next three higher harmonic frequencies produced by this pipe.

Solution
The harmonics are integer multiples of the fundamental frequency, so they are the same as for the guitar string with the same
frequency.

f2 = 2 f1 = 659.26 Hz, f3 = 3 f1 = 988.89 Hz and f4 = 4 f1 = 1318.5 Hz

(c) For an organ pipe with one open end and one closed end, what length is need to produce this note as its fundamental frequency.

Solution
For a pipe with one open and one closed end, the formula relating the fundamental frequency to the length changes

f1 = 329.63 Hz , v = vsound = 343
m

s
and f1=

v

4 L
⟹ L =

v

4 f1
= 0.260 m

(d) What are the next three higher harmonic frequencies produced by the pipe in (c).

Solution
For this case we only get odd harmonics.

f3 = 3 f1 = 988.26 Hz, f5 = 5 f1 = 1648.2 Hz and f7 = 7 f1 = 2307.4 Hz

Beats

Consider interference between two sound waves that differ slightly in frequency.  The resulting sound is heard to pulse at a frequency much
smaller than that of the component waves.  At some position from some source a wave will have the form:  u(t) = A cos(ω t + ϕ).  To make the
result its most dramatic we will assume that at the position where the combined waves are heard, the amplitudes of the two waves are the same.
Also, for simplicity, we will choose t = 0 to be when both waves are at a phase ϕ = 0.  The two waves become:

u1(t) = A cos(ω1 t) and u2(t) = A cos(ω2 t).

To add these two waves we will use the same trig. identity we used with standing waves.  
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cos(α + β) + cos(α - β) = 2 cos α cos β.

Using α = 1

2
(ω1 + ω2) t  and β = 1

2
(ω1 - ω2) t we get:

u(t) = u1(t) + u2(t) = A cos(ω1 t) + A cos(ω2 t)

= 2 A cos
ω1 + ω2

2
t cos

ω1 - ω2

2
t .

This can be written in terms of the average (angular) frequency ωave and the beat (angular) frequency ωbeat.

u(t) = 2 A cos( ωave t ) cos
1

2
ωbeat t  where ωave =

ω1 + ω2

2
and ωbeat = ω1 - ω2

Using  ω = 2 π f  we get the average frequency and beat frequency:

u(t) = 2 A cos(2 π fave t ) cos( π fbeat t ) where fave =
f1 + f2

2
and fbeat =  f1 - f2

fave=180 Hz fbeat=40 Hz f1=200. Hz f2=160. Hz

u1,u2

t

u1+u2

t

Tbeat=1/ fbeat

Interactive Figure

The frequency fave  oscillates  rapidly.   Since the  function cos(2 π fave t )  varies  between ±1,  the  function u(t)  stays  between ±2 A cos( π fbeat t ),
this is called the envelope function, 
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