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O.1 - Fluids and Density
There are three primary states of matter: solid, liquid and gas. Other more exotic states can occur under extreme temperatures and pressures;

the most common of these is a plasma. We have intuition for these three states: A solid has a shape and a volume, although it can be deformed
into a different shape. Liquids have a volume but no specific shape. A gas has no shape and will  expand to fill  any volume. Our intuition for
solid, liquids and gases can be deceiving. For instance, at high pressures the distinction between liquids and gases often disappears. Also, things
that are obviously solids to us, like glasses and plastics, can actually be very very slow-flowing liquids.

In this chapter we are studying fluids. A fluid is defined as a liquid or a gas. Lumping together these two distinct things may seem awkward
at first but we will see that they share many common properties. The most important of these properties is pressure. 

All matter can be ascribed a density, where density ρ is defined as a mass per unit volume.

ρ =
m

V
=

mass

volume
Mass values in the metric system were defined based on properties of water; a cubic centimeter, which is the same as a milliliter, of water has
one gram g of mass.  A liter L of water,  which is the same as a cubic decimeter,  then has a kilogram of mass and cubic meter has a thousand
kilograms of mass.

ρwater = 1
g

cm3
= 1

kg

L
= 1000

kg

m3

Water  is  a  very  useful  reference  density,  since  if  something  floats  it  is  less  dense  than  water  and  if  it  sinks  it  is  more  dense  than  water.  The
specific gravity is defined as the ratio of the density of a substance to the density of water; this is the same as the numerical value of density in
units of gcm3.

Densities of Solids Densities of Fluids
Substance ρ kgm3 ρ  gcm3 Substance ρ kgm3 ρ  gcm3

Gold 19 320 19.32 Mercury 13 600 13.6
Lead 11 300 11.3 Glycerin 1260 1.26
Silver 10 490 10.49 Sea water 1025 1.025

Iron or Steel 7800 7.8 Water 1000 1.000
Aluminum 2700 2.7 Olive oil 920 0.92

Granite 2700 2.7 Carbon dioxide 1.908 0.00198
Ice 917 0.917 Air 1.29 0.00129

Wood 300 - 900 0.3 - 0.9 Helium 0.18 0.00018
Cork 270 0.27 Hydrogen 0.090 0.000090

Densities of solids (left) and fluids (right)  (reference)

Example O.1 - What is the Average Density of the Earth

The mass M and radius R of the earth are

M = 5.97×1024 kg and R = 6.38×106 m

Solution
Using the formula for the volume of a sphere we can get the result.

V =
4

3
π R3 = 1.0878×1021 m3 ⟹ ρ=

M

V
= 5490

kg

m3

https://openstax.org/books/college-physics-2e/pages/11-2-density


O.2 - Pressure in a Fluid

Pascal’s Principle

Pressure P is defined as force per unit area,

P =
F

A
=

Force

Area
In the SI system, we measure pressure in Pa = pascal.

Units:  The SI unit for pressure is: Pa = Nm2

Suppose you have a vertical cylindrical column of some solid. Pushing downward at the top of the column will increase the force per area on a
horizontal surface inside the column, but it will not affect the force per area on any vertical surfaces. A downward force on the column will not
produce any horizontal outward forces. 

In the case of a fluid, a liquid or a gas, pushing downward on the top of a vertical cylindrical piston, the pressure (force/area) is the same for
all orientations of a surface; pushing downward on a piston will also increase the outward force of the fluid in all directions.

This piston example illustrates Pascal’s principle:

Increasing  the  pressure  by  a  fixed  amount  at  one  position  of  a  closed  container  with  a  static  fluid,  increases  the  pressure
everywhere in the fluid by the same amount.

Pressure pushes in all directions equally. The force on a flat surface of area A inside a surface is has the same magnitude of F = PA, independent
of the orientation of the surface.

Atmospheric Pressure and Gauge Pressure

Atmospheric pressure varies. The current pressure a topic in discussion of the current weather; typically high pressure corresponds to good
weather and low pressure to bad weather. When a standard value of atmospheric pressure is given, it is an average value; we will call this 1 atm. 

1 atm = 1.013×105 Pa = 14.7 lb in2

The  listed  value  in  pounds  per  square–inch  or  psi = lb in2  is  familiar  to  most.  Forces  due  to  atmospheric  pressure  are  huge.  Why do  we  not
notice them? A pressure of 1 atm acting on the large area of a wall gives a huge force but there is the same huge force acting on the other side of
the wall to cancel it. If all the air in an adjacent room were evacuated making it a vacuum, then essentially any wall would collapse under those
huge forces. It is pressure differences that cause forces.
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Suppose a car’s tire pressure is badly depleted and a pressure gauge reads 13 psi = 13 lb in2. Does that mean the pressure in the tire is less
than outside? Clearly this is not the case; air will flow out of the tire. What the gauge reads is called the gauge pressure, which is the difference
between the absolute pressure and atmospheric pressure. So in the tire example the pressure in the tire is larger than 1 atm by 13 psi. An absolute
pressure of zero is a perfect vacuum. A gauge pressure of zero means the pressure is 1 atm.

gauge pressure = P - 1 atm

Variation of Pressure with Depth

It is a well-known fact that as one goes deeper under water, the pressure increases. This is a general feature of fluids and it is caused by the
added weight of the fluid above it.

Isolate a rectangular block of the fluid, shown in a pale red. The net force of the fluid sitting in the same
fluid must be zero. Pressure increases with depth because of the additional weight of fluid above.         

Consider a fluid and isolate a rectangular block of the same fluid, shown in red above. The rectangular block has an area A  at the top and the
bottom and a height h.  Take the pressures at the top and bottom of the block to be Ptop  and Pbottom, respectively, and the forces at the top and
bottom are Ptop A and Pbottom A. The net force on a rectangular block of fluid sitting in the same fluid must be zero. Pressure exerts forces on the
sides of the rectangular block, but those forces will cancel. Since this is a case of static equilibrium, the net force must vanish. Equating the total
force upward Pbottom A with the total downward force Ptop A +W gives:

Pbottom A = Ptop A +W

where W is the weight of fluid in the block. The mass in the block is m = ρV  and the volume is V = Ah.

W =mg = ρVg = ρAhg

Combining these two expressions and canceling the area A gives the expression for variation of pressure with depth.

Pbottom = Ptop + ρgh

For water open to the air, the pressure at the top is 1 atm. At what depth h0 does the pressure increase by another 1 atm.

1 atm = ρwatergh0

Using the density of water we can find h0.

1 atm = 1.013×105 Pa, ρwater = 1000
kg

m3
and g = 9.8

m

s2
⟹ h0,water =

1 atm

ρwater g
= 10.3 m

With water then, every additional h0 = 10.3 m of depth gives another atmosphere of pressure. So at a depth of h0 the pressure is 2 atm, at 2 h0 it is
3 atm, etc.

Example O.2 - Water Pressure at the Titanic Wreck

The wreck of the titanic is about 3800 m below the surface. Taking the density of sea water to be 1027 kgm3 what is the pressure at the
wreck? Give the answer in both Pa and atm.
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Solution
This  is  a  straight-forward  application  of  the  formula  for  variation  of  pressure  with  depth.  Take  the  top  position  to  be  at  the
surface Ptop = 1 atm, and the Pbottom = P

ρ = 1027
kg

m3
, h = 3800 m and Ptop = 1 atm = 1.013×105 Pa

P = Pbottom = Ptop + ρgh = 3.83×107 Pa = 379 atm

Torricelli Barometer

Imagine a sink full of water and a glass in the sink. With the glass full of water invert the cup and lift it with the lip still below the surface.
The pressure at the surface is 1 atm, so the pressure at the top of the inverted glass is less by ρ g h, where h is the height of the glass. 

water

P=1 atm

water

P=1 atm
P=1 atm - ρwatergh

h

What would happen if the glass were taller than h0 = 10.3 m? The absolute pressure cannot be negative so the maximum height of the column of
water is h0; above that would be a vacuum. This could be made into a barometer, a device to measure atmospheric pressure. If a column of water
is taller than h0 = 10.3 m, then watching the small changes in the height is measuring the atmospheric pressure. Because it is so tall, it would not
be a practical device. Using a more dense fluid would improve this.

A much more dense fluid is mercury, with a density of ρmercury = 13 600 kgm3. This is the basis of the barometer invented by Torricelli.

ρmercury = 13 600
kg

m3
⟹ h0,mercury =

1 atm

ρmercury g
= 0.760 m = 760 mm

Pressure is sometimes measured in mmHg or millimeters of mercury with a standard value of 760 mmHg for atmospheric pressure.

Hg

P=1 atm

760 mm

P=0
vacuum

The Torricelli Barometer

Example O.3 - Blaise Pascal’s Very French Barometer

Blaise  Pascal  was  a  mathematician,  physicist,  philosopher  and  theologian.  He  did  important  early  experiments  using  Torricelli’s
barometer; as an example, he took a Torricelli barometer up a mountain and showed that pressure decreases with altitude. A much more
whimsical  experiment  involved  building  a  barometer  using  Bordeaux  wine  instead  of  mercury.  If  the  density  of  the  wine  was
984 kgm3, then what was the height of his barometer column?
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Solution

1 atm = 1.013×105 Pa = ρwinegh0,wine ⟹ ρwine = 984
kg

m3
⟹ h0,wine =

1 atm

ρwine g
= 10.5 m

O.3 - Buoyancy and Archimedes’ Principle
Archimedes  (287 -  212 BC)  was  a  remarkable  polymath  and genius.  Much of  his  work  was  lost  to  history,  but  some somewhat  recently

discovered documents illustrate how advanced he was for the time; he had anticipated and used much of what later became calculus almost two
millenia before its invention. The common story of the discovery of Archimedes’ principle is perhaps apocryphal but is too good to not repeat.
While taking a bath, he discovered the principle of buoyancy. Thrilled by this discovery, he ran into the street naked screaming “Eureka”.

The buoyant force B is the net upward force on a floating or submerged object caused by the variation of pressure with depth. To see there
is a net upward force consider the submerged block in the diagram below. 

The buoyant force B on rectangular block is caused by the variation of pressure with depth, 
since the force pushing up on the bottom is larger than the force pushing down at the top.   

Since  the  forces  on  the  sides  of  the  block  must  cancel,  the  net  upward  force,  the  buoyant  force  B,  becomes  B = Pbottom A - Ptop A.  Using  the
variation  of  pressure  with  depth  we  get  Pbottom - Ptop = ρfluid g h.  Since  the  volume  of  the  block  is  V = Ah.  Combining  these  results  gives  an
expression for the buoyant force Fb.

B = ρfluid V g

This is Archimedes principle: the buoyant force is the weight of the displaced fluid. 

The  derivation  above  illustrates  that  the  variation  of  pressure  with  depth,  but  this  mathematical  result  could  not  motivate  anyone  to  run
down the street naked screaming “Eureka”. A more general derivation involves replacing the submerged object with the fluid. The force of water
pressure pushing up on the submerged object is the buoyant force. Now replace the submerged object with an imaginary surface, shown dashed
in the diagram below to the right, that contains the same fluid. The force on the fluid sitting in the same fluid bust be zero, so the buoyant force
must equal the weight of fluid that occupies that volume. Thus, the buoyant force is the weight of the displaced fluid.
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Example O.4 - Just the Tip of the Iceberg

What fraction of an iceberg’s total volume is above the water? Take the density of seawater to be 1027 kgm3 and the density of ice to
be the tabulated value given earlier, ρice = 917 kgm3.

Solution
We are given the density of ice, the density of sea water  and we will need g.

ρice = 917 kgm3 and ρsw = 1027 kgm3.

Archimedes principle says that the total weight of the ice Wice  with a total volume Vtot  must equal the weight of the displaced
seawater, Wdisp, with a volume Vdisp.

Wice = ρice Vtot g and Wdisp = ρsw Vdisp g ⟹ Wice =Wdisp ⟹ ρice Vtot g = ρsw Vdisp g

From this we can find the fraction of the ice below the water and then the fraction above.


fraction
below  =

Vdisp

Vtot
=

ρice

ρsw
= 0.893 ⟹ 

fraction
above  =

Vtot - Vdisp

Vtot
= 1 -

Vdisp

Vtot
= 1 -

ρice

ρsw
= 0.107

Example O.5 - Lighter than Air

A helium balloon has a volume of 12 L = 0.012 m3 of helium gas with a density of 0.123 kgm3. The rubber of the balloon has a mass of
1.4 g. The balloon is held from below by a string. What is the tension in the string? Take the density of air to be 1.20 kgm3.

Solution
We are given volume V, the mass of the rubber mrubber, the density of helium ρhelium, the density of air ρair and we will also need
g.

V = 0.012 m3, mrubber = 1.4 g = 1.4×10-3 kg, ρhelium = 0.123 kgm3,
ρair = 1.20 kgm3 and g = 9.8 ms2
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The total  mass of  the balloon is  the sum of  the mass of  the balloon’s  rubber  and the helium in it.  Multiplying by g  gives  the
balloon’s total weight.

mtot =mrubber + ρhelium V = 0.003956 kg ⟹ W =mtot g = 0.03877 N

The buoyant force B is the weight of the displaced air.

B = ρair g V = 0.14112 N

The free-body diagram for the balloon consists of the upward buoyant force and both the tension and weight acting downward.
The tension then becomes

T = B -W = 0.102 N
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