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Q.1 - Ideal Gases

Basic Definitions

The  assumption  behind  an  ideal  gas  is  that  �����it  is  a  collection  of  non-interacting  point  particles.  By  this  we  mean  that  the  size  of  each
molecule is small compared to the fraction of the total volume occupied each molecule (the total volume divided by the number of molecules).
Also we assume that the forces between the molecules can be neglected.

P = Pressure SI units = Pa = Nm2

V = Volume SI units = m3

T = Temperature SI units = K
N =  of molecules Dimensionless

Pressure  is  the  absolute  pressure  measured  in  Pascals,  Pa.  Temperature  is  the  absolute  temperature  in  K.  Our  emphasis  will  be  different
from that of a chemistry class. In chemistry it is important to keep track of the amount of material; this is related to the number of moles n. In
physics our emphasis is relating macroscopic quantities to microscopic ones; the actual number of molecules N is more important in physics.

Ideal Gas Law

There are some basic proportionalities that are satisfied.  Keeping N and T constant we get an inverse proportionality between pressure and
volume  P ∝ 1 /V .   With  N  and  V  constant  we  get  a  proportionality  between  pressure  and  temperature   P ∝ T.   For  the  same P  and  T  we  get
V ∝ N.  The ideal gas law follows from this.

P V ∝ N T

The constant of proportionality is a fundamental constant called Boltzmann's constant kB

P V = N kB T

where Boltzmann's constant has the value

kB = 1.38×10-23
J

K
.

Note  that  Boltzmann’s  constant  could be viewed as  a  conversion between Joules  and Kelvins,  and temperatures  could be measured in  Joules.
This approach is not standard at this level and will be avoided here.

Example Q.1 - Number of Molecules

How many air molecules are in a room with dimensions, 8 m by 10 m by 3 m?  Assume 1 atm of pressure and a temperature of 20 °C.

Solution
This is a straight-forward application of the ideal gas law.

V = 8 m×10 m×3 m = 240 m3, P = 1 atm = 1.013×105 Pa , T = 20 °C = 293 K

P V = N kB T ⟹ N =
P V

kB T
= 6.01×1027



Atomic and Molecular Masses

mproton ≃ mneutron ≫ melectron

Atoms consist of protons, neutrons and electrons.  The masses of the proton and neutron are approximately equal and both are much larger
than the mass of an electron.  

mproton = 1.6726×10-27 kg
mneutron = 1.6749×10-27 kg
melectron = 9.109×10-31 kg

For atoms the atomic number Z is the number of protons in the nucleus, which is the same as the number of electrons in a neutral atom.  A, the
atomic mass number, is the number of nucleons, where protons and neutrons are nucleons.

Z = atomic number =  of protons =  of electrons
A = atomic mass number =  of nucleons (protons and neutrons)

A - Z =  of neutrons
One would expect, naively, that the mass of an atom should equal the sum of its constituent parts.  This is not the case.  It takes energy to break
up an atom into its constituent parts.  Using the mass-energy equivalence of relativity,  E = m c2,  it follows that since the constituent parts have
more energy, they have more mass.

matom = Z mproton + (A - Z) mneutron + Z melectron - 
Binding
Energy c2

In this expression, the Binding Energy is the amount of energy required to break up the atom into is constituent parts.

Because this naive approach doesn't work we introduce the atomic mass unit, u, which is defined to be the approximate contribution to the
mass of an atom due to each proton and neutron.  

u ≃ mproton ≃ mneutron

Thus the approximate mass of an atom is A u.

matom ≃ A u

We precisely define u in terms of  the carbon-12 isotope,  12C.   Carbon has Z = 6.   The 12 refers  to  the mass number,  A = 12.   u  is  defined as
112th the mass of  12C.

u =
1

12
mass12C = 1.6605×10-27 kg =

1

6.0221×1023
g

The mole, abbreviated mol, is an SI base unit related to this.  A mole is defined as the number of atoms in 12-grams of carbon-12; this number,
known as Avogadro’s number, has the approximate value

NA = 6.02×1023 mol .

The number of moles n and the number of molecules N are related by

N = n NA.

We can then write the ideal gas law in terms of the number of moles

PV = NkBT
= nNAkBT

If we define the ideal gas constant R by

R = NA kB = 8.314
J

mol ·K
,

then the ideal gas law has the form

PV = nRT.

The mass of a mole of some molecule can be related to the molecular mass in atomic mass units, u. The value for the molecular mass in u is
the same as the molar mass in grams.  For example a molecule of CO2 has molecular mass of 44 u, so its molar mass is 44 g /mol.

mmol = NA mmolecule = NA 44 u = 44 g /mol, since NA u = g /mol.

The total mass of a gas can then be written as
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mtot = N mmolecule = n mmol.

Example Q.2 - The Density of Air

(a) Estimate the density of (dry) air at 20 °C and 1 atm, assuming air is composed entirely of nitrogen N2.

Solution

P = 1 atm = 1.013×105 Pa , T = 20 °C = 293 K and R = 8.314
J

mol ·K
First we need to find the molar mass.

mmolecule = mN2 = 2 mN = 2×14 u = 28 u ⟹ mmol = 28 g /mol = 0.028 kg /mol.

We can find an expression for the number of moles n using the ideal gas law and then get an expression for the mass

PV = nRT ⟹ n =
P V

R T
and mtot = n mmol = mmol

P V

R T
Density ρ is mass per volume.  The volume V will cancel.

ρ =
mtot

V
= mmol

P

R T
= 1.16 kgm3

(b) The accepted value for the density of dry air at 20 °C is 1.204 kgm3.  Calculate a more accurate result for the density of dry air by
taking air to be 78% N2, 21% O2 and 1% Argon, where the atomic mass of argon is: mAr = 40 u.

Solution
mO2 = 2 mO = 2×16 u = 32 u ⟹ mmol,O2 = 32 g /mol = 0.032 kg /mol

Also for Argon, which is monatomic, we have

mAr = 40 u ⟹ mmol,Ar = 40 g /mol = 0.040 kg /mol.

The molar mass of air can be found as a weighted average.

mmol = 0.78 mmol,N2 + 0.21 mmol,O2 + 0.01 mmol,Ar ⟹ ρ=
mtot

V
= mmol

P

R T
= 1.20 kgm3

Q.2 - Kinetic Theory

Temperature and the Microscopic Origin of Pressure

One Particle in a One-Dimensional Box
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Interactive Figure - A particle in a one-dimensional box and the impulsive force on a wall.

Consider  a  particle  of  mass  m  moving  with  speed  v  in  a  one-dimensional  box  between  walls  separated  by  L.  The  particle  moves  freely,
meaning  without  external  force,  except  for  elastic  collisions  with  the  walls.  With  each  collision  the  particle  exerts  a  force  on  the  wall.  The
impulse-momentum theorem relates the average force on a wall to the change in the particle’s momentum.

Fave Δ tcollision = Δp = 2 m v

Usually  when  we  use  the  impulse-momentum theorem,  we  calculate  the  very  large  force  during  a  very  brief  time  of  contact  of  the  collision,
Δ tcontact; this is not what we are doing here. Now we want the average force over all time, so we are using Δ tcollision  as the larger time between
collisions with that wall. The time between collisions with one wall is Δ tcollision = 2 L /v.  This gives an expression for the average force.

Fave
2 L

v
= 2 m v ⟹ Fave L = m v2

Our single particle creates far from a steady force on the wall. We will see that when we consider a huge number of particles then we get a
very steady average force; this is the microscopic origin of pressure.

One Particle in a Three-Dimensional Box
Now we imagine our particle of mass m  moving in a three-dimensional Lx ×Ly×Lz  box and making elastic collisions with the walls.  The

velocity of the particle is constant until there is a collision. In an elastic collision with a wall parallel to the zy-plane, the y- and z-components of
the velocity are unchanged but vx changes sign.

In an elastic collision with a wall that is parallel to the xy-plane (or      
perpendicular to the x-axis) the x-component of the velocity changes 
sign but the y- and z-components of the velocity stay the same.         

The x-component of the force on the wall becomes

Fave,x Δ tcollision = Δ px = 2 m vx
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The time between collisions with one wall is  Δ tcollision = 2 Lx / vx. This gives an expression for the average force on the wall.

Fave,x
2 Lx

vx
= 2 m vx ⟹ Fave,x Lx = m vx

2

N Non-interacting Particles and Pressure
Now consider N non-interacting particles in the same box. The effect of more particles is more collisions and the right-hand side involves

the sum over all N particles, where i labels the i th particle.

Fave,x Lx = m 
i

vi,x
2 = N m vx

2ave ,

where vx
2ave is the average of vx

2.

vx
2ave =

1

N


i

vi,x
2 ⟹ 

i

vi,x
2 = N vx

2ave

Since pressure is force per area, we can now write this in terms of the pressure on the wall.

Fave,x = P×Area = P Ly Lz ⟹ Fave,x Lx = P Lx Ly Lz = P V

P V = N m vx
2ave ,

We now want to relate the right-hand side to the average kinetic energy of particles. The average squared-speed can be written as:

v2ave = vx
2ave + vy

2ave + vz
2ave

There is nothing distinguishing the x-, y- and z-components so the averages of the squared velocity components must be the same; this allows us
to write vx

2ave in terms of the average of the squared-speed.

vx
2ave = vy

2ave = vz
2ave ⟹ vx

2ave =
1

3
vx

2ave + vy
2ave + vz

2ave =
1

3
v2ave

Ktrans,ave is the average translational kinetic energy of particles.

Ktrans,ave =
1

2
m v2ave

The pressure can now be written in terms of the average translational kinetic energy.

P V = N m vx
2ave = N

m

3
v2ave = N

2

3
Ktrans,ave

With this we have a microscopic interpretation of pressure. Pressure describes the force per area on walls due to the collisions between gas
molecules and the walls. Each molecular collision gives a very small force but with a huge number of molecules we get significant steady forces
on walls.

Kinetic Energy, Temperature and Root-mean-squared Speed
Combining the expression above and the ideal gas law

P V = N×
2

3
Ktrans,ave and P V = N kB T

we can get an expression relating the average translational kinetic energy of gas molecules to temperature.

Ktrans,ave =
3

2
kB T

We have made the assumption that the collisions with the walls are elastic. Let us explore this more deeply. If the walls and the gas are at
the same temperature then the collisions are, on average, elastic. Suppose instead, that the walls are at a higher temperature than the gas. There is
then  more  random  motion  in  the  atoms  of  the  wall  than  in  the  molecules  of  the  gas  and,  on  average,  the  gas  molecules  gain  energy  in  the
collisions with the wall. Similarly, if the gas is at a higher temperature then the collisions tend to give up energy to the wall. This is the mecha-
nism for heat flow between the walls and the gas!

The average velocity  of  gas  molecules  is  zero,  since velocity  is  a  vector  and a  gas  molecule  is  as  likely  to  move in  one direction as  any
another.  A  nonzero  average  velocity  would  correspond  to  wind,  where  vave  is  the  wind  velocity.  To  get  a  measure  of  typical  speeds  of  gas
molecules we use the root-mean-squared speed, this is the square root of the average (mean) of the speed squared.
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vrms = v2ave =
1

N


i

vi
2 ⟹ Ktrans,ave =

1

2
m vrms

2

The rms, or root-mean-squared, speed is a measure of the typical speed of gas molecules. Equating the two expressions for Ktrans,ave we get

1

2
m vrms

2 =
3

2
kB T and vrms =

3 kB T

m

In this expression m is the mass of a gas molecule.

Example Q.3 - vrms for N2

What is the root-mean-squared speed of nitrogen molecules N2 at room temperature 20 °C?

Solution
We will need to find the mass of nitrogen in kg. The atomic mass of nitrogen is 14 u; from this we can find the molecular mass
in kg.

u = 1.6605×10-27 kg ⟹ mN2 = 2×mN = 2×14 u = 28 u = 4.649×10-27 kg

Using the listed value for Boltzmann’s constant and the temperature in K, we can now solve for vrms.

kB = 1.38×10-23
J

K
, 20 °C = 293 K and

1

2
m vrms

2 =
3

2
kB T ⟹ vrms =

3 kB T

m
= 511

m

s

Internal Energy of a Monatomic Ideal Gas

From the perspective of kinetic theory, the internal energy of a system is the sum of the kinetic and potential energies of all the particles.
Since an ideal gas consists of non-interacting particles there is no potential energy between the particles. There could be gravitational potential
energy but in we will neglect that. A particle has only translational kinetic energy, where by a particle we mean a point. Single atoms behave like
particles, so monatomic gases only have translational kinetic energy. We saw that rigid bodies also have rotational kinetic energy, so diatomic
and polyatomic gases will have rotational kinetic energies. Here we will only consider only the monatomic case. The most common examples of
monatomic gases are the noble gases; these are the elements on the far right of the periodic table. These atoms have all filled shells of electrons
and are averse to forming molecules. The noble gases consists of: helium, neon, argon, krypton, xenon and radon.

For a monatomic gas, since there is only translational kinetic energy, the average kinetic energy is the average translational kinetic energy
Kave = Ktrans,ave. The total energy of the gas, its internal energy U, is given by U = N Kave, where N is the number of molecules (or atoms in this
case) in the gas.

U = N Kave = N Ktrans,ave = N
3

2
kB T

This also allows us to write the internal energy of a monatomic ideal gas in term of both the number of molecules N or the number of moles n.

U =
3

2
N kB T =

3

2
n R T

Example Q.4 - Internal Energy of Helium Gas

A pressurized tank used for filling balloons contains 0.260 kg of helium gas at 20 °C. What is the internal energy of the gas? (Helium is a
monatomic gas with atoms consisting of two protons with two neutrons. Its atomic mass number is A = 4, so its atomic mass is 4 u.

Solution
We are given the temperature, which must be converted to kelvins. Also we are given the mass which will allow us to find the
number of moles. We saw in the discussion of ideal gases that the atomic or molecular mass in atomic mass units u is the same
as the molar mass in g /mol.

matom = 4 u ⟹ mmol = 4 g /mol = 0.004 kg /mol

Since we know the total mass of helium, we can find the number of moles.
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mtot = 0.260 kg and mtot = n mmol ⟹ n =
mtot

mmol
= 65 mol

Using this and the temperature we can find the internal energy.

R = 8.314
J

mol ·K
and T = 20 °C = 293 K ⟹ U =

3

2
n R T = 238 000 J
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