
Chapter R

The Laws of Thermodynamics
Blinn College - Physics 1401 - Terry Honan

R.1 - Work and the First Law

Thermodynamic Work

As we saw in Chapter F, the work done in one dimension is W = ∑ F Δx.  Consider a gas at a pressure P expanding in a piston. If the piston
has  a  cross-sectional  area  of  A  and  it  expands  by  the  infinitesimal  amount  ⅆ x,  then  the  infinitesimal  work  done  by  the  gas  is
F Δx = P A Δx = P ΔV .  Here we have used F = P A and ΔV = A Δx.  

One-dimensional work: An expanding gas in a piston does work on the environment.

This result is more general; if any system at a pressure P expands by ΔV , the small amount of work is P ΔV .

Three-dimensional case: Generally, an expanding thermodynamic system does work as it expands.

The work done by a thermodynamic system is

W =P ΔV .

When a system expands it does work on the environment. Our sign convention is that W  is the work done by  the system, where positive work
decreases the energy of the system. The work done on the system is -W. The historical reason for this convention is that the focus was on getting
work from engines, where the engine was the system.

For the simple case of expansion with a constant pressure we get



W = P ΔV .

Generally, when the volume increases the work is positive; it is negative when volume decreases.

PV-Diagrams and Thermodynamic States

Suppose there is some thermodynamic system, for instance a fixed quantity of some substance.  Knowledge of the pressure P and volume V
uniquely specifies the thermodynamic state.  For example, one could find the temperature uniquely from P and V.  The equation that relates P, V
and T is called the equation of state.  For complex thermodynamic systems this is not a simple function that one can write down, but for an ideal
gas it is just the ideal gas law.

A PV-diagram is a graph of P vs. V (P is the y-axis and V is the x-axis.)  Work has a simple interpretation in terms of PV-diagrams; it is the
area under the curve.

W = P ΔV = ±Area Under

Since P is always positive the sign of P ΔV  is the same as on the sign of ΔV .
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Interactive Figure

In  thermodynamics  we  often  deal  with  cycles.  A  cycle  is  a  closed  path  in  a  PV-diagram.  For  a  cycle  there  is  a  positive  and  a  negative
contribution.  If the path is clockwise the positive contribution dominates and the result is positive and it just then enclosed area. When the path
is counterclockwise the result is negative.

Wcycle = ±Area Enclosed
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Example R.1 - The PV-Diagram
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(a) What is the work for different processes taking a system from point A to point B?  Find WAB (the direct path), WACB and WADB.

Solution
Since all three cases correspond to increasing volumes we have W = +(Area under).  
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The SI unit of work is Joule, where  J = Pa m3.  Our axes have the units of atmospheres and liters.  We need to convert the units
of our areas from atm L to J.

1 atm = 1.013×105 Pa and 1 L = 10-3 m3 ⟹ 1 atm L = 101.3 J
For  WAB  we  have  a  trapezoid.   The  area  of  a  trapezoid  with  a  base  width  of  b  and  sides  with  heights  of  h1  and  h2  is
Area = 1

2
b (h1 + h2).  It follows that

WAB = +
1

2
4 L (2 atm + 8 atm) = +20 atm L = +2026 J

For WACB and WADB we have rectangles.  

WACB = +4 L×8 atm = +32 atm L = +3242 J and WADB = +4 L×2 atm = +8 atm L = +810 J

This shows the path-dependent nature of work explicitly.

(b) What is the work for a process that takes the system from point B to point A, WBA?

Solution
Here we have a process with decreasing volume, so W = -(Area under). 
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WBA

For  WAB  we  have  a  trapezoid.   The  area  of  a  trapezoid  with  a  base  width  of  b  and  sides  with  heights  of  h1  and  h2  is
Area = 1

2
b (h1 + h2).  It follows that

WBA = -WAB = -2026 J

(c) What is the work for the cycles ADBCA and ABDA?
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Solution
For a cycle we have W = ±(Area enclosed), where clockwise gives positive and counterclockwise gives negative. 
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WABDA

For WADBCA there is a counterclockwise path around a rectangle. 

WADBCA = -4 L×6 atm = -24 atm L = -2431 J

There is a clockwise path around a triangle for WABDA.

WABDA = +
1

2
4 L×6 atm = +12 atm L = +1215 J

Quasi-static Processes

This  discussion  of  clear  paths  in  a  PV-diagram  implies  that  we  are  undergoing  a  quasi-static  process.  A  process  is  quasi-static  if  it  is
performed sufficiently slowly, so that at each intermediate state the system stays in thermal equilibrium. As an example of a process that is not
quasi-static,  consider  the  free  expansion  of  a  gas.  Start  with  a  container  containing  two  regions  separated  by  a  partition.  On  one  side  of  the
partition is a pressurized gas and on the other side is a vacuum. When the partition is removed, the gas undergoes a free expansion. The initial
and final states are in equilibrium but the intermediate states are not. When a system is not in equilibrium, pressure and temperature are not well-
defined quantities.

Partition

Vacuum

Initial

Partition Removed

Final
The free expansion of a gas is not quasi-static.

It is possible, theoretically, to do this expansion with a quasi-static process by slowly dragging a piston from initial to final positions. 

In this example with an expanding gas, approximating a quasi-static process need not be too slow. To be in thermal equilibrium the system
must be at a uniform temperature; there can be no temperature gradients. Suppose heat is added to a solid block. To be in equilibrium every point
in the block must be at the same temperature. An approximately quasi-static process here would be very slow; each time after a small amount of
heat is added, one must wait for the system to equilibrate.

Adiabatic and Isothermal Processes

A process is said to be adiabatic when it is sufficiently well-insulated so that no heat enters or leaves the system. So for an adiabatic process
Q = 0.  If  a  process  is  done  quickly,  like  the  free-expansion  of  a  gas  discussed  above,  then  there  is  not  enough time for  heat  to  flow and it  is
adiabatic. The word isothermal implies the temperature is constant, so an isothermal process is at constant temperature.

Work for Isothermal Expansion of an Ideal Gas

For an ideal gas we can use the ideal gas law, the equation of state, to write the pressure as a function of volume.  When the gas undergoes
an isothermal expansion its temperature stays constant.
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Interactive Figure: Work for an Isothermal Process of an Ideal Gas

The work is the area under this curve. Using integral calculus one can show that this becomes:

W = n R T ln
Vf

Vi
.

Note that the natural log function guarantees that result of the work formula has the correct sign, since the natural log of a ratio less than one is
negative.

Example R.2 - Isothermal Expansion

What is the work done by 50-g of oxygen O2 gas as it is compressed by tripling its pressure at a constant temperature of 20 °C?

Solution

m = 0.050 kg , T = 20 °C = 293 K and
Pf

Pi
= 3

The mass of O2 will tell us the number of moles n.  The mass of a molecule in u gives the molar mass

mO2 = 2 mO = 2×16 u = 32 u ⟹ mmol = 32 g /mol = 0.032 kg /mol

and this gives us the number of moles.

m = n mmol ⟹ n =
m

mmol
= 1.56 mol

The ideal gas law with constant n and T relates the ratio of the volumes to the ratio of the pressures.  This is known as Boyle’s
law.

P V = n R T
n,T const.

Pi Vi = Pf Vf ⟹
Vf

Vi
=

Pi

Pf
=

1

3

W = n R T ln
Vf

Vi
and R = 8.314

J

mol ·K
⟹ W = -4180 J

Note that increasing the pressure will decrease the volume and the work will then be negative.

State Functions

A state function is a function of pressure and volume.  It has a unique value at each point in a PV-diagram.  Temperature is a state function,
since it follows from the equation of state.

f = f (V , P) is a state function.
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When a system changes from (Vi, Pi) to Vf , Pf  a function f has a change of Δ f  given by

Δ f = f (Vf , Pf ) - f (Vi, Pi)

A cycle is some process that forms a closed loop in a PV-diagram; it follows that for a state function in a cycle: Δ f = 0.

Internal Energy and the First Law

The energy of a thermodynamic system can be increased by adding thermal energy in the form of heat or by adding mechanical energy by
doing work on the system.  We will write the internal energy of a thermodynamic system as U.  The first law of thermodynamics is

Δ U = Q - W.

Δ U is the change in the internal energy of the system.  Q is the heat added to the system.  W is the work done by the system.  It follows that -W
is the work done on the system.  Internal energy is a state function.  Since it is a state function then Δ U  is independent of the path taken.  Since
the work is path dependent it follows from the first law that the heat is also path dependent, and not a state function.

Example R.3 - The PV-Diagram (Continued)
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(d) What is the heat added to the system over the ABDA cycle?

Solution
First we need the work which we calculated in part (c).
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WABDA

There is a clockwise path around a triangle for WABDA.

W = WABDA = +12 atm L = +1215 J

Because it is a cycle, ΔU = 0 and the first law implies that Q = W.

0 = ΔU = Q - W ⟹ Q = W = +1215 J

(e)  If  0.30 kcal  of  heat  flow out  of  the  system as  it  goes  from point  B  to  point  A,  then  what  is  the  change  in  internal  energy  for  this
process?

Solution
We are given the heat that flows out so the heat that flow in is negative and we have to convert kcal to J.

Q = -0.30 kcal×
4186 J

kcal
= -1256 J
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We calculated the work in part (b) as the negative of the area under the trapezoid.

W = WBA = -2026 J

The first law of thermodynamics gives us the change in internal energy.

ΔU = Q - W = +770 J

R.2 - Entropy

Irreversibility and Reversible Processes

Thermodynamics  puts  an  arrow on time.  Take  a  video of  dropping an  egg on the  floor  and run  it  in  reverse.  Clearly,  the  reversed  video
would show itself as unphysical. All real-world physical processes are irreversible but we can consider idealized reversible processes.

A  quasi-static  process  is  reversible.  As  we  saw  last  chapter  a  quasi-static  process  is  one  where  we  have  an  equilibrium  state  for  each
intermediate state in a process;  they are given by clear  paths in PV-diagrams.  By following backward along the path in a PV-diagram we can
restore  the  system  and  its  surroundings  to  their  original  state.  A  thermodynamic  system  undergoing  an  irreversible  process  can  always  be
returned  to  its  original  state  but  in  both  the  process  and  return,  a  net  quantity  of  heat  will  flow  to  the  environment;  this  cannot  be  undone.
Whenever  heat  flows  spontaneously  across  a  temperature  gradient  we  have  an  irreversible  process.  The  free  expansion  of  a  gas,  as  discussed
earlier is not quasi-static and thus not reversible. This chapter will discuss entropy and the second law of thermodynamics. For a system and its
environment, a reversible process has zero change in the total entropy and an irreversible process has a net increase in entropy.

A reversible (quasi-static) process is an idealization. When the state of a system is changed by a small amount it moves slightly away from
equilibrium, but if  done sufficiently slowly the deviations from equilibrium can be negligible and the process can be arbitrarily close to being
reversible.

Definition of Entropy

Entropy S is a measure of disorder.  One is not used to thinking of disorder as a precise notion that can be quantified, but it turns out that we
can give it a precise definition.  Doing so is beyond the scope of this course.

If we add heat to a system then we increase its disorder.  For example, water at 0 °C is a more disordered state than ice at 0 °C; to go from
ice to water requires only heat.  We define entropy as the state function; for a small Q entropy is defined by

ΔS =
Q

T
.

When heat is added to a system its entropy increases.  When it is removed (Q < 0) it decreases. 

Constant Temperature and Latent Heats

If the temperature T is a constant then summing all the small ΔS above gives the same expression

Δ S =
Q

T
But now the Q is the total amount of heat added to the system. When some substance changes phase, its temperature stays constant. In that case
the heat can be written in terms of the latent heat and mass.

Q = ±m L
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Temperature Change and Specific Heats

We can find entropy changes in cases of changing temperatures using the specific heat formula Q = m c ΔT. This can be done with calculus
by summing over small changes in temperature ΔT. 

ΔS =
m c ΔT

T
The result from calculus becomes.

ΔS = m c ln
Tf

Ti

Example R.4 - Making Ice Cubes

(a) A tray of water is put in the freezer.  What is the change in entropy of an ice tray when 0.45-kg of water initially at 22 °C is frozen to
ice at -18 °C?

Solution
The relevant data are the mass, and the temperatures.  The constants needed are the specific heats of water and ice and the latent
heat of fusion for water.

m = 0.45 kg , 22 °C = 295 K , 0 °C = 273 K , -18 °C = 255 K ,

cW = 4186
J

kg K
, cI = 2100

J

kg K
and Lf = 3.34×105

J

kg
There are three steps we need to consider.

Water at 22 °C ⟶
1

Water at 0 °C ⟶
2

Ice at 0 °C ⟶
3

Ice at -18 °C
The total change in entropy will be the sum of the changes for each of the three steps.  In each step, heat is being removed so the
changes must be negative.

ΔS1 = m c ln
Tf

Ti
= m cW ln

273 K

295 K
= -146.99

J

K

ΔS2 =
±m L

T
=

-m Lf

273 K
= -550.55

J

K

ΔS3 = m c ln
Tf

Ti
= m cI ln

255 K

273 K
= -64.46

J

K

ΔSice tray = ΔS1 + ΔS2 + ΔS3 = -761.0
J

K

R.3 - The Second Law of Thermodynamics

Statement of the Second Law

A thermally isolated system is one with no heat entering or leaving it.  This could consist of smaller systems exchanging heat between them
but no heat is allowed to leave or enter the larger system.  The total change in entropy for a system is written as Δ Stot.

For a thermally isolated system the total change in entropy cannot be negative.

Δ Stot ≥ 0

Heat Reservoirs

In thermodynamics we define a reservoir to be something sufficiently large to maintain a constant temperature given whatever amount of
heat exchange as is relevant.  If the amount of heat transferred is sufficiently small then a reservoir could be as small as a glass of water.  If the
amount of heat is large then we must consider reservoirs that are very large.
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In thermodynamics we define a reservoir to be something sufficiently large to maintain a constant temperature given whatever amount of
heat exchange as is relevant.  If the amount of heat transferred is sufficiently small then a reservoir could be as small as a glass of water.  If the
amount of heat is large then we must consider reservoirs that are very large.

Example R.5 - Making Ice Cubes (Continued)

(b)  The  heat  that  flows  out  of  the  ice  tray  flows  into  the  freezer.  What  is  the  total  change  in  entropy  of  the  system consisting  of  the
freezer ice and the ice tray  in the “Making Ice Cubes” example above?

Solution
Take the  freezer  to  be  a  heat  reservoir  at  -18 °C = 255 K.  The total  change in  entropy of  the  freezer-ice  system is  the  the  ΔS
from the  the  previous  part,  which  we  will  now refer  to  as  ΔSice,  added  to  the  change  in  entropy  of  the  freezer,  ΔSfreezer.  The
(positive) heat that flows into the freezer Qfreezer is the heat flowing out of the ice. Using our convention that Q is the heat added
to a system, take the Qice to be negative.

0 = Qtot = Qfreezer + Qice tray ⟹ Qfreezer = -Qice

The constants and values used in part (a) are also needed here.

m = 0.45 kg , 22 °C = 295 K , 0 °C = 273 K , -18 °C = 255 K ,

cW = 4186
J

kg K
, cI = 2100

J

kg K
and Lf = 3.34×105

J

kg
Before finding the entropy change of  the freezer  ΔSfreezer  we must  first  find Qfreezer  and for  that  we need to sum the heats  for
each of the three steps referred to in part (a). 

Q1 = m cW ΔTW = -14 441 J

Q2 = ±m L = -m Lf = -150 300 J

Q3 = m cI ΔTI = -170 010 J

Qice = Q1 + Q2 + Q3 = -208 751 J

Since the freezer is a reservoir, its entropy change is 

Qfreezer = -Qice and ΔSfreezer =
Q

T
=

Qfreezer

255 K
= -

Qice

255 K
= 818.6

J

K
The change in entropy of the freezer is positive since heat flows into it. The total change in entropy of the ice tray and freezer
combined is the sum of Qfreezer with the change in the entropy of the ice, found in part (a) ΔSice tray = -761.0 J /K.

ΔStotal = ΔSfreezer + ΔSice tray = 57.6
J

K
Since this  larger  system is  thermally  isolated,  no heat  flows out  of  it  or  into  it,  then by the  second law our  answer  had to  be
positive.

The Second Law and the Direction of Heat Flow

In any spontaneous process, heat flows from hot to cold.  This is an immediate consequence of the second law.  Consider an amount of heat
Q flowing from a reservoir at temperature T1  to a second reservoir at temperature T2.  Since heat is leaving T1  its entropy decreases, while the
entropy of T2 increases.  The total change in entropy is the sum of these two; by the second law it must be nonnegative.

0 ≤ Δ Stot = Δ S1 + Δ S2 =
-Q

T1
+

Q

T2
⟹

1

T1
≤

1

T2

Cross-multiplying and remembering that absolute temperatures are always positive gives

T2 ≤ T1.

Thus, heat flows from a higher to a lower temperature.

Refrigerators, Air Conditioners and Heat Pumps

It is possible however, to have a situation where heat is taken from a cold reservoir and vented to a hotter reservoir.  The key phrase in the
above discussion is spontaneous process.   A refrigerator removes heat from a cold interior and vents it  to the warm coils behind.  The crucial
point is that more heat is vented to the back than is removed from the interior.  The additional energy is provided by some motor (a compressor)
doing work; it pumps the coolant around some cycle.
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Consider a cold reservoir at temperature TC and a hot reservoir at TH.  QC is removed from TC and QH  then is vented to TH.  The conserva-
tion of energy implies that

QH = QC + W.

This says that the additional energy comes from the work done by the motor.  The change in the total entropy is

Δ Stot = Δ SC + Δ SH =
-QC

TC
+

QH

TH
.

It should be clear that if W is large enough that the QH may be sufficiently large to cancel any negative Δ SC.  Heat is moved from cold to hot.

An air conditioner is simply a refrigerator operating between the cold interior of a house and the warmer exterior.  A heat pump is an air
conditioner running in reverse on a cold winter day.  The outdoors is air conditioned!  Heat QC  is removed from the cold exterior and more heat
QH  is vented inside.  The amount of electrical energy that is used is determined by the work W.  The heat vented inside is larger than the amount
of electrical energy that is used.  The QC is essentially a bonus.

R.4 - Heat Engines

Heat Engines and Efficiency

Interactive Figure

A heat engine is essentially an air conditioner running in reverse.  Some fuel is burned creating an input heat of QH.  The point of the engine
is to convert this heat to work W.  We will define the efficiency of a heat engine to be the energy output of the engine, the work, divided by the
energy input, QH.
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e =
W

QH

A perfect  heat  engine would be 100% efficient.   Unfortunately this  is,  because of  the second law, impossible.   There is  a  decrease in entropy
without any increase to cancel it.

With a heat engine we have a hot reservoir at temperature TH  producing the input heat QH.  Some of that heat is converted to work W, but
necessarily some of it must be vented to the environment.  Take the environment to be a cold reservoir at TC receiving the vented heat QC.

Conservation of energy gives

QH = QC + W.

With this we can rewrite the efficiency

e = 1 -
QC

QH
.

The Second Law and Efficiency

The second law has the following form

Δ Stot = Δ SC + Δ SH =
QC

TC
+

-QH

TH
≥ 0.

This gives a fundamental upper limit on the efficiency of a heat engine.

QC

TC
+

-QH

TH
≥ 0 ⟹

QC

QH
≥

TC

TH
⟹ 1 -

QC

QH
≤ 1 -

TC

TH

It follows that

e ≤ emax where emax = 1 -
TC

TH
.

A Carnot Engine

A Carnot engine is a theoretical heat engine of maximum efficiency.  Its efficiency ec is then given by

ec = emax = 1 -
TC

TH
.

Example R.6 - Heat Engine

A heat engine takes 3800 kcal of heat from a hot reservoir at 350 °C and vents 2400 kcal of heat to the environment at 40 °C.

(a) What is the efficiency of this heat engine?

Solution
First list what is given, remembering that temperatures must be in Kelvin.

QH = 3800 kcal , QC = 2400 kcal , TH = 350 °C = 623 K and TC = 40 °C = 313 K

The efficiency involves only the heats.

e = 1 -
QC

QH
= 0.368 = 36.8 %

(b) What is the total change in the entropy for this process?

Solution
We are removing QH  from TH  and adding QC  to TC.  The total change in entropy is the sum of the negative change in the hot
reservoir’s entropy and the positive change in the cold reservoir.
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ΔStot = ΔSH + ΔSC = -
QH

TH
+

QC

TC
= -6.0996

kcal

K
+ 7.6673

kcal

K
= +1.568

kcal

K
(c) What is the maximum efficiency a heat engine could have when operating between these two reservoirs?

Solution
The maximum efficiency will depend only on the temperatures.

emax = 1 -
TC

TH
= 0.498 = 49.8 %
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