
Chapter A

Electric Charges, Forces and Fields
Blinn College - Physics 1402 - Terry Honan

A.1 - Electric Charge

Properties of Charge

There are two types of electric charge.  Like charges repel and unlike attract.
We can label the types with signs.  The choice of positive and negative was originally arbitrary, but our current convention was set a long time
ago.

Electric charge is conserved.
The other fundamentally conserved quantities are: energy, linear momentum and angular momentum; these were discussed in the first semester
mechanics course.  A conserved quantity cannot be created or destroyed.  To charge a body one can add charges to it or remove charges from it. 

Electric charge is quantized.
Any charge is an integer multiple of the fundamental charge e.  The unit of charge is C = Coulombs, which is considered a fundamental unit in
the SI system.

Q = n e, where e = 1.602×10-19 C
The definition of the Coulomb will be given later, when we discuss the magnetic force between two conductors.  Take the value of the fundamen-
tal charge e as our tentative definition.

Normal matter consists of protons, neutrons and electrons with charges shown here.

Particle Charge
proton +e
neutron 0
electron -e

It is clear that any combination of these will satisfy the charge quantization rule  Q = n e, where n = 0, ±1, ±2, ±3, …

Units:  The SI unit for charge is:  C

A.2 - Coulomb’s Law
The first understood of the fundamental forces was gravity, which was described by Newton with his law of universal gravitation.  Coulomb

successfully described the electrostatic force between charges by analogy to gravity.

Review of Gravity

Newton's law of gravity is an inverse square law between point masses.  If m1  and m2  are point masses separated by distance r the magni-
tude of the force between them is



F = G
m1 m2

r2
.

F21F12m1 m2

r

The force on one mass due to another is toward the other. These forces 
satisfy Newton’s third law and break up into equal and opposite pairs.

Coulomb's Law

Coulomb  found  the  force  law  for  electrostatics  by  analogy  to  gravity.   Mass  is  the  gravitational  analog  of  charge.   There  are  two  key
differences  between  the  electric  and  gravitational  cases.   Electric  charge  can  be  positive  or  negative  but  mass  is  always  positive.   The  force
between  two  masses  is  attractive  but  the  force  between  like  charges  is  repulsive.   The  electric  force  is  an  inverse  square  law  between  point
charges.  The magnitude of the force is

F = ke
q1 q2

r2
,

where the absolute values guarantee a positive result.  The constant ke is a universal constant, like Newton's gravitational constant G.  It is related
to another constant ε0, which is usually taken as more fundamental.

ε0 = 8.85×10-12
C2

N ·m2

ke ≡
1

4 π ε0
= 8.99×109

N ·m2

C2

F21F12

Like
Charges

Like
Charges

F21F12

Unlike
Charges

Unlike
Charges

q1 q2

r

The force on one charge due to another is toward or away from the other charge. 
These forces satisfy Newton’s third law and break up into equal and opposite pairs.

Example A.1 - Gravitational versus Electrical Attraction for a Hydrogen Atom

In addition to the attractive electric force between a proton and an electron there is also gravitational attraction as well.  Is it important to
consider gravity when studying the physics of the hydrogen atom?  

What is the ratio of the gravitational to electric attraction between a proton and an electron?

Solution
The values of the relevant constants are :

ke = 8.99×109 N ·m2 C2

G = 6.673×10-11 N ·m2 kg2

e = 1.602×10-19 C
melectron = 9.11×10-31 kg
mproton = 1.673×10-27 kg

The electric and gravitational forces have magnitudes :

Felec = ke
Q1 · Q2

r2
= ke e2 r2

Fgrav = G
m1 m2

r2
= G melectron mproton r2
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We now take the  ratio.   Note  that  because both forces  vary as  inverse  square  laws,  the  ratio  does  not  depend on the  distance
between particles, r.

Fgrav

Felec
=

G melectron mproton r2

ke e2 r2
=

G melectron mproton

ke e2
= 4.41×10-40

The  above  number  is  dimensionless  and  is  thus  independent  of  units.   This  small  numeric  value  shows  that  unless  40  digit
accuracy is needed, we can ignore gravity when studying the hydrogen atom.  The smallness of this value poses a fundamental
question:  How  does  some  underlying  theory  that  unifies  gravity  with  the  other  forces,  the  strong  nuclear  force  and  the
electroweak force, give rise to such a small dimensionless number.  There is no such unified theory now but it is considered an
ultimate goal of physics.

To find the force on a charge due to a distribution of charge one adds the forces due to each charge in the distribution.  Force is a vector and
this addition is then vector addition.

Example A.2 - Two Point Charges

4 m x

y

-50 μC 80 μC

An 80 μC is at (4 m, 0) and a -50 μC is at the origin.  What is the force on the 80 μC charge? What is the force on the -50 μC charge?

Solution
Take q1 = -50 μC and q2 = 80 μC. The distance from the origin to (4 m, 0) is  r = 4 m. 

F = ke
q1 q2

r2
,

First calculate the magnitude of the force.

F = ke
q1 q2

r2

= 9.0×109 N·m2

C2

80×10-6 C 50×10-6 C

(4 m)2

= 2.25 N
Since we have unlike charges, one positive and one negative, then the force is attractive, or toward the other charge; for q1 that
is the positive-x direction 

F12 = F x = 2.25 N x

and for q2 the force is in the negative-x direction.

F21 = -F x = -2.25 N x

4 m x

y

F21F12

q1 =-50 μC q2 =80 μC

A.3 - The Electric Field

The gravitational analog of electric field E  is the gravitational field g.  To define the gravitational field, we find the force F  on a test mass
m0 and divide the test mass into it.

g =
F

m0
.

We define the electric field similarly.  Find the force F on a test charge q0 and divide the test charge into it.
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E =
F

q0
.

The direction of the electric field is the direction of the force on a positive test charge; thus, it  points toward negative charges and away from
positive charges.

Units:  The SI unit for Electric Field is: N /C

Field of a Point Charge

The electric field for a point charge Q can be found using the prescription above.  Take the vector r to be the vector from Q to some point P.
To get E due to Q at P, first find the force on a test charge q0 placed at P using Coulomb's law.

F = ke
q q0

r2

Since E = F /q0, we can write the magnitude of the electric field in terms of the magnitude of the force: E = F / q0

E = ke
q

r2

Since the direction of E is the direction of the force on a positive test charge. If q is positive then it repels a positive q0 and if q is negative then it
attracts a positive q0. It follows that the direction of E is away from positive q and toward a negative q.

E

E
E

E

E

E

E

E

q>0

E

E
E

EE

E

E

E

q<0

The electric field is directed away from positive charges and toward negative.

Principle of Superposition

If you have two or more point charges then the total electric field due to all the charges is the sum of the fields due to each charge. The total
electric field E due to the charges q1, q2, … is

E = E1 + E2 +…

where E1 is the field due to q1, E2is the field due to q2, etc. 

Example A.3 - Two Point Charges - Continued
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4 m

3 m

x

y

36.9°

P

-50 μC 80 μC

Let us take the previous example a step further. With the same 80 μC at (4 m, 0) and -50 μC at the origin, find the electric field (vector)
at  the  point  P,  at  (0, 3 m).  (Note  that  the  angle  of  36.9 °  is  given  to  facilitate  the  calculation.)  Also,  find  the  magnitude  and  direction
angle (measured counterclockwise from the x-axis) of the electric field.

Solution

3 m

4 m x

y

36.9°

36.9°

θ

E1

E2

E

P

q1 =-50 μC q2 =80 μC

Take q1 = -50 μC and q2 = 80 μC. The distance from q1  at  the origin to P  at  (3 m, 0)  is  r1 = 3 m. We can use the Pythagorean
theorem to find r2 the distance from q2 at (4 m, 0) to P.

r2 = (4 m)2 + (3 m)2 = 5 m

Now find the magnitudes of E1 and E2.

E1 = ke
q1

r1
2

= 9.0×109
N ·m2

C2

50×10-6 C

(3 m)2
= 50 000 N /C

E2 = ke
q2

r2
2

= 9.0×109
N ·m2

C2

80×10-6 C

(5 m)2
= 28 800 N /C

From  the  magnitudes  and  angles  we  can  find  the  components  of  the  fields  and  then  the  vectors.  E1 has  only  a  negative  y-
component 

E1x = 0 and E1y = -E1 = -50 000
N

C
⟹ E1 = -50 000

N

C
y

For E2, its x-component is negative and adjacent to the angle and its y-component is positive and opposite the angle
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E2x = -E2 cos 36.9 ° = -73 030
N

C
and E2y = E2 sin 36.9 ° = 17 290

N

C

⟹ E2 = -73 030
N

C
x + 17 290

N

C
y

Adding these together gives the total field.

E = E1 + E2 = Ex x + Ey y = -73 000
N

C
x - 32 700

N

C
y

For the magnitude of the field

E = Ex
2 + Ey

2 = 80 000
N

C
To find the direction angle, we first find the angle shown in the diagram.

θ = tan-1
Ey

Ex
= 24.1 °

For the angle measured counter-clockwise from the positive-x direction we add 180°.

θE = θ + 180 ° = 204.1 °

A.4 - Field Diagrams and Electric Flux

Field Diagrams

The electric  field  is  a  vector  field.   This  means  that  at  each  position  in  space  there  is  a  vector.   A typical  way of  representing  a  general
vector field is to draw a grid with a vector at each point in the grid.

Q

Point Charge Field - Vectors on a Grid

Such diagrams, however, can get quite complicated in the case of electric fields; one gets a tangled mess of overlapping arrows.  The convention
that we use is to draw continuous curves showing only the direction of the field at some position.  The field lines begin at positive charges and
end at negative charges.  We will see that the density of lines is a measure of the strength (magnitude) of the field.

Consider the field of a positive point charge; the field lines point radially away from the charge.  

6 | Chapter A - Electric Charges, Forces and Fields



Point Charge Field - Continuous Curves

Different  concentric  spheres  with  the  charge  at  the  center  will  have  the  same number  of  lines  passing through them.   The area  of  a  sphere  is
A = 4 π r2, so if we take the number of lines per area we get:

 of lines

Area
∝

1

r2

where "∝ " is the proportional symbol.  The electric field magnitude is also proportional to 1
r2 .  It follows that

mag of field = E ∝
 of lines

Area
.

This gives the graphical interpretation of the magnitude of the field.  When the lines are close together the field is strong and when they are far
apart it is weak.

Electric Dipole
QL = -Q  is the charge on the left and QR = +Q  is the charge on the right.

QL QR

Two Positive Charges
QL > 0  is the charge on the left and QR > 0  is the charge on the right.  Also QL < QR.
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QL QR

One Positive, One Negative, Net Charge Negative
QL < 0  is the charge on the left and QR > 0  is the charge on the right.  Also QL + QR < 0.

QL QR

Electric Flux

Electric flux is a measure of the number of field lines passing through a surface.  We will  develop a definition of flux gradually, starting
with special cases and generalizing.

Flux of a Uniform Field through a Flat Surface
We saw in the discussion of electric field diagrams that the number of field lines per area is a measure of the strength of the field.  Strictly,

by area we mean A⊥, the part of the area perpendicular to the field.

E ∝
 of lines

A⊥
.

We want the flux Φ to be a measure of the number of lines through a surface Φ ∝ ( of lines) so we can define the flux in the case of a uniform
field and a flat surface to be

Φ = E A⊥ = E A cos θ

The angle θ is measured between the electric field and the normal (perpendicular) to the surface. The n  shown in the diagram is the unit normal
vector, that is the unit vector perpendicular to the surface.

AA⊥
E

n
θ

θ
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AA⊥
E

n
θ

θ

Putting the cos θ with the E gives E⊥ = E cos θ and we get

Φ = E⊥ A

There is a sign ambiguity in the flux. Every surface has two sides or faces; if in the picture above, we chose the opposite unit normal vector -n

then the angle would change to 180°– θ and the flux Φ would change sign. 
The electric  flux  through a  surface  depends  only  on the  component  of  the  field  through the  surface.  If  the  electric  field  is  parallel  to  the

surface, the flux is zero. Remember that flux is a measure of the number of lines passing through a surface and parallel field lines do not pass
through the surface.

Flux in General
The expression for flux must now be generalized to the case of a general field that varies spatially and a surface that is not flat.  To do this,

break the surface into (infinitely) many small flat pieces. The flux through one small piece is Φ = E⊥ A, where E⊥ is the perpendicular component
of the field at that small A.  The total flux through a surface is found by summing over all these small areas.

Φ =E⊥ A

Here we are using the typical notation where the symbol “∑” represents a sum. When we say small, we are implying the limit as the areas go to
zero. We will never actually evaluate these huge sums, except in simple symmetric cases where the sum becomes trivial.

This shows successively finer grids approximating a sphere. The sum in the definition of flux is over each triangle in a grid.

The sign ambiguity in the flux is  still  present with this general  formula since all  surfaces have two sides,  but for the important case of closed
surfaces  we  can  choose  the  convention  to  use  the  outside  surface;  this  will  be  important  in  out  discussion  of  Gauss’s  Law,  where  we  will
consider the flux for closed surfaces only.

Point Charge at the Center of a Sphere
Consider the case of a point charge q at the center of a sphere of radius R. What is the flux through the sphere?

Φ =E⊥ A

The electric field due to a point charge has magnitude E = ke q r2. When we remove the absolute value from the charge then we will use Er  to

denote the radial (or outward) component of the field Er = ke qr2; if the q is negative then Er is negative, implying that it is directed inward. 
The field is now perpendicular to the surface of the sphere and along the surface or the sphere we have r = R, the radial (outward) compo-

nent has the constant value

r = R = constant ⟹ E⊥ = Er = ke
q

R2
= constant

Because it is constant we can take it out of the sum (factoring it out of the sum). Using the total surface area of a sphere of radius R we get the
result:

Φ =E⊥ A = ke
q

R2
A = ke

q

R2
A = ke

q

R2
Atot = ke

q

R2
4πR2 = 4πke q =

q

ε0
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Note that this is independent of the radius of the sphere. This must be the case; flux is a measure of the number of field lines passing through a
surface and any field line that passes through one sphere will pass through another of a different radius.

Point Charge and any Closed Surface
Now suppose that the sphere so that the q was not at the center. Any line that passes through the original sphere would still pass through so

the flux must be the same: Φ = q / ε0. If we deform the sphere into any curved surface that contains the the charge then the flux is still the same. 

+
++++

+
+
+
+
+ + + +

+
+
+ +

++++

+++

+

+

+

+ + + +++
+

-
- +

+
++

+

-

----

If the charge is outside of the sphere then the flux would be zero. When a line enters a surface it is a negative contribution and when it leaves it is
a positive contribution so it gives a net flux of zero. Summarizing the flux due a point charge q and any closed surface.

Φ = 
q /ε0 when q is inside closed surface
0 when q is outside closed surface

A.5 - Gauss’s Law and Calculating Fields

Gauss’s Law

Now extend the previous discussion and consider a closed surface and all of the charges in the universe. If a charge is inside the surface it
contributes q / ε0 to the flux and if a charge is outside it contributes zero. If we define qenclosed as the total charge enclosed by the surface the we
can write an expression for the flux through any closed surface.

Φ =
1

ε0
qenclosed (Gauss 's Law)

This expression is called Gauss’s Law.

The surface we use for Gauss’s law is a closed surface. We refer to the closed surface used as a Gaussian surface. When field lines leave the
surface that is a positive contribution to the flux and when they leave it is a negative contribution. Field lines only begin at positive charges or
infinity and end at negative charges or infinity. What Gauss’s law says is that counting the field lines entering or leaving a surface tells you how
much charge is enclosed by the surface. 

Calculating Fields with Gauss’s Law

Gauss’s law is useful as a method to calculate electric fields in cases of symmetry. To find the field at some position P  we will choose a
Gaussian surface that reflects the symmetry and passes through the point P  so that the flux can be written as Φ = E×(some area).  These vague
general comments should become clearer as we progress.

Charge Densities
Often instead of specifying a given charge we talk about charge densities. There are three different charge densities to consider.

◼  λ = charge
length

= linear charge density  ⟺  charge = λ×(some length)

◼  σ = charge
area

= surface charge density  ⟺  charge = σ×(some area)

◼  ρ = charge
volume

= volume charge density  ⟺  charge = ρ×(some volume)

Spherical Symmetry
A distribution of charge is spherically symmetric if it is the same under any rotation about the origin. The simplest example of a spherical

distribution is  a point  charge at  the origin.  Other examples are a uniform solid sphere or a hollow spherical  shell;  under any rotation a sphere
looks the same. We will first consider the simplest example of a point charge and then find a general expression for all spherical symmetry.
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A distribution of charge is spherically symmetric if it is the same under any rotation about the origin. The simplest example of a spherical
distribution is  a point  charge at  the origin.  Other examples are a uniform solid sphere or a hollow spherical  shell;  under any rotation a sphere
looks the same. We will first consider the simplest example of a point charge and then find a general expression for all spherical symmetry.

Although we know the electric field for a point charge already we will now recalculate that result using Gauss’s law and this will illustrate
the use of Gauss’s law to find fields. We start with a point charge q at the origin and we want the electric field a distance r from the charge. Take
our point P to be at r. Spherical symmetry implies that the electric field only has a radial component Er  and that that radial component must be
constant over a sphere of radius r. We choose the Gaussian surface to be a sphere of radius r.

Φ =E⊥ A =Er A = Er  A = Er Atot = Er 4 π r2

q

r

P

The Gaussian surface is shown as green and dashed. The only charge inside is q so qenclosed = q.

The charge that is enclosed inside our Gaussian surface (the sphere of radius r) is the only charge q.

qenclosed = q

Applying Gauss’s law gives the expression for Er we had previously.

Φ =
1

ε0
qenclosed ⟹ Er 4 π r2 =

1

ε0
q ⟹ Er =

1

4 π ε0

q

r2
= ke

q

r2

We can now get a general result for the problem of spherical symmetry. The expression for the left hand side of Gauss’s law, the expression
for flux, depends only on the spherical symmetry so it applies generally. The qenclosed will vary with the problem at hand.

Φ =
1

ε0
qenclosed ⟹ Er 4 π r2 =

1

ε0
qenclosed ⟹ Er =

1

4 π ε0

qenclosed

r2
= ke

qenclosed

r2

In this expression, qenclosed is the total charge enclosed by (or inside) a sphere of radius r.

Example A.4 - Thin-shelled Hollow Sphere

Consider a thin-shelled or radius R with a uniform surface charge density σ. (This is a hollow sphere of negligible thickness.) What is
the electric field as a function of r, the distance from the center? (Give answers for the two cases: r < R and r > R.)

σ

R
r

P1

r

P2

P1 represents the r < R case and P2 represents the r > R case 

Solution
In the expression we derived above for spherical symmetry
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Er = ke
qenclosed

r2

the only thing we need is to find qenclosed  as a function of r. Consider first the case of r < R. All of the charge is outside of the
Gaussian surface.

σ

R
r

P1

r<R case

σ

R

r

P2

r>R case

The Gaussian surface is shown in green and dashed for each of the two cases, r < R and r > R.

For the r < R case there is no charge inside the Gaussian surface so it follows that qenclosed = 0. We can then solve for the field.

Er = 0

The r > R case has charge inside the Gaussian surface; all of the charge on the spherical shell is inside the Gaussian surface. We
are  given  the  surface  charge  density  and  must  find  the  charge  from that.  As  discussed  above  to  get  a  charge  from σ  we  use:
Q = σ×(some area) and the relevant area is the surface area of a sphere of radius R, which is 4 π R2.

qenclosed = σ 4 π R2

Er = ke
qenclosed

r2
= ke

σ 4 π R2

r2

An alternative way of writing this, in terms of ε0

Er = ke
σ 4 π R2

r2
=

1

4 π ε0

σ 4 π R2

r2
=

σ R2

ε0 r2

Planar Symmetry - The Infinite Plane of Charge

Now consider an infinite plane with a uniform surface charge density σ. We choose our Gaussian surface to be a tube with ends as shown
above; take the cross-section of the tube to have area A. The electric field is perpendicular to the surface and is directed away from it, taking σ to
be positive. The field parallel to the sides of the tube, so the flux there is zero. The only contribution to the flux is at the two ends, labeled as A⊥
and shown in green. At either end the field is perpendicular and the flux is E A  so the total  flux leaving the Gaussian surface is Φ = 2 E A.  To
finde qenclosed  we need to find how much charge is inside our Gaussian surface.  That area of charge is shown in red and labeled Aenclosed.  The
charge is the that multiplied by σ. qenclosed = σ Aenclosed = σ A. Gauss’s law then gives us the field.
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Now consider an infinite plane with a uniform surface charge density σ. We choose our Gaussian surface to be a tube with ends as shown
above; take the cross-section of the tube to have area A. The electric field is perpendicular to the surface and is directed away from it, taking σ to
be positive. The field parallel to the sides of the tube, so the flux there is zero. The only contribution to the flux is at the two ends, labeled as A⊥
and shown in green. At either end the field is perpendicular and the flux is E A  so the total  flux leaving the Gaussian surface is Φ = 2 E A.  To
finde qenclosed  we need to find how much charge is inside our Gaussian surface.  That area of charge is shown in red and labeled Aenclosed.  The
charge is the that multiplied by σ. qenclosed = σ Aenclosed = σ A. Gauss’s law then gives us the field.

Φ =
1

ε0
qenclosed ⟹ 2 E A =

1

ε0
σ A ⟹ E =

σ

2 ε0

A.6 - Conductors, Insulators, Charging and Electrostatic Attraction

Conductors and Insulators

◼ Conductors

Inside a conductor there are freely moving charges. In the most common conductors, metals, the charge carriers are electrons; most of the 
electrons are tied to their atoms but a small number of electrons from each atom are shared by all atoms in a sea of electrons, which are free 
to move.  In semiconductors, the conduction mechanism is different.  The charge carriers are either electrons jumping between atomic sites 
or positively charged holes (A hole is lack of an electron.) jumping between atoms; they are called n-type and p-type semiconductors for 
negative (electrons) and positive (holes) charge carriers.

◼ Insulators

Inside an insulator there are no freely moving charges. All the electrons are tied to their atom or to bonds between atoms. Common examples 
of insulators are glasses, ceramics, rubbers and plastics.

Conductors in Electrostatics

In  the  first  several  chapters  we are  studying electrostatics  where  we consider  properties  of  electric  charges,  forces  and fields  when nothing is
allowed to move. Moving charges are currents and currents are not allowed in electrostatics.

◼ Inside a conductor E = 0.

If there is an electric field inside a conductor, any free charges will move.  This means that an electric field inside a conductor implies a 
current.  Since currents are not allowed in electrostatics, it follows that the electric field inside a conductor must be zero.

◼ There is no excess charge inside a conductor.  All excess charge is on the surface of a conductor.

Consider a Gaussian surface entirely inside a conductor.  Since the electric field is zero, Gauss's law implies that qenclosed = 0.  This means 
there is no excess charge in any region inside a conductor.  There can be excess charge on a conductor, though.  All excess charge is on the 
surface.

◼ The electric field is perpendicular to the surface of a conductor and it is proportional to the surface charge density, E = σ/ε0.
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For the same reason that the field is zero inside a conductor, it must be perpendicular to the surface of a conductor.  If there is a component 
parallel to the surface of a conductor then that will induce surface currents and this violates the assumptions of electrostatics.

The region to the left represents a conductor. All the charge is at the surface of the conductor; the 
positive surface charge density σ is shown in blue. A⊥ is the part of the surface were there is a flux. 

The part of the charge inside the conductor is labeled Aenclosed; this will be used to find qenclosed.

Similarly to the example with an infinite planar sheet we have planar symmetry, but now all the charge is at the surface of the conductor and 
there is no field inside the conductor. Using the same Gaussian surface as before we now get that since the field is zero inside the conductor, 
so the inside end gives zero flux.  This leaves a flux of E A at the outside end.

If the surface charge density at that position is σ then the charge enclosed by the Gaussian surface is qenclosed = σ Aenclosed = σ A. 

Φ =
1

ε0
qenclosed ⟹ E A =

1

ε0
σ A ⟹ E =

σ

ε0

The field is perpendicular to the surface of the conductor and is proportional to the surface charge density at that position. Note that if the 
surface charge density is negative, the field points into the conductor.

Electrostatic Attraction

When a charge is  brought  near  a  neutral  conductor  the charge rearranges the charges in the conductor.  Consider  a  positive charge near  a
conductor. Negative charges in the conductor move near the positive charge outside and the positive charges move to the other side. There is still
as much positive as negative charge in the conductor but the positive charges are further. The attractive force between the outside positive charge
and the nearer negative charges is then larger than the repulsive force of the positive which are further. There is a net attractive force. We say
that the conductor is polarized. Even insulators can become polarized when a charge is brought near, giving a net attractive force.

Charging Objects

 When two materials are rubbed together charge jumps from one to the other. This is how clothes in a dryer get charged. When you rub comb is
run through your hair charge jumps from the comb to the hair.

A.7 - Conductors, Shielding and Gauss’s Law
We consider another spherical Gauss’s law example. Consider a point charge q at the center of a hollow conducting sphere. Take the sphere

to have an inside radius a and an outside radius b. We will first consider the case where the conductor is neutral.
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b a
q

r

P1
r

P2

r

P3

To solve for the field as a function of distance from the center we have to consider the three cases, r < a,  a < r < b and r > b. 

b a
q

r

P1

r<a case

b a
q

r

P2

a< r<b case

b a
q

r

P3

r>b case

The Gaussian surface is shown in green and dashed for each of the three cases, r < a,  a < r < b and r > b.

We  have  established  the  formula  for  the  (outward)  radial  component  of  the  electric  field  in  our  discussion  of  Gauss’s  law  with  spherical
symmetry

Er = ke
qenclosed

r2

where qenclosed is the charge inside the Gaussian surface.

◼  r < a  case:

qenclosed is the charge inside the Gaussian surface through P1. The only charge is qenclosed = q. We can then write down the expression for the 
radial component of E.

Er = ke
q

r2

◼  a < r < b  case:

Between a and b we are now inside a conductor and the electric field is zero, E = 0 and the radial component of E is also zero.

Er = 0

All of the charge is at the surface of a conductor but this conductor has two surfaces and there must be charge on both. Because of the field 
vanishing inside a conductor and Gauss’s law, it must be true that for the Gaussian surface through P2 we have qenclosed = 0. This means that 
at r = a, the inside surface of the hollow conductor, the charge must cancel the charge at the center. It follows that at r = a there is a 
uniformly distributed charge of -q. 

◼  r > b  case:

Outside of the conductor we now consider the Gaussian surface through P3.  qenclosed is the charge inside that Gaussian surface and since the 
conductor is neutral, meaning it has zero net charge, we have only the charge at the center:  qenclosed = q and we get:
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Er = ke
q

r2

Summarizing, for the case of a point charge inside a neutral conductor, although the net charge on the conductor is zero there is -q on the inside
surface (at a) and +q on the outside surface (at b).

Now consider the case where there is a net charge of Q on the conductor. The r < a and a < r < b cases are the same but the outside case is
now different.
◼  r > b  case:

Outside of the conductor we again consider the Gaussian surface through P3 but now because the conductor has a charge then qenclosed is the 
total charge inside that Gaussian surface and that is the total charge:  qenclosed = q + Q and we get:

Er = ke
q + Q

r2

b a
q

-q

q+Q

Example A.5 - A Point Charge Inside a Hollow Conducting Sphere

Let us return to the previous case and work it with numbers. Take the sphere to have an inside radius of 4 cm and an outside radius of
6 cm. We have now the values

a = 4 cm = 0.04 m and b = 6 cm = 0.06 m

b a
q

r

P1
r

P2

r

P3

(a)  First  we  look  a  the  case  where  the  point  charge  at  the  center  is  q = 5 μC  and  the  conductor  is  neutral.  What  is  Er,  the  radial
component of E,  at a distances of r = 3 cm, r = 5 cm and r = 7 cm. Also describe the charge distribution by giving both the charge and
surface charge density at both surfaces of the conductor, at 4 cm and 6 cm.

Solution
At r = 3 cm, we have the r < a  case. 
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Er = ke
q

r2
= 9.0×109

N ·m2

C2

5×10-6 C

(0.03 m)2
= 5×107

N

C
At r = 5 cm, we have the a < r < b  case. 

Er = 0

At r = 7 cm, we have the r > c  case. 

Er = ke
q

r2
= 9.0×109

N ·m2

C2

5×10-6 C

(0.07 m)2
= 9.18×106

N

C
For the charges and charge densities: At r = 4 cm

charge = -q = -5 μC and σ =
charge

area
=

charge

4 π r2
=

-5×10-6 C

4 π (0.04 m)2
= -2.49×10-4

C

m2

At r = 6 cm

charge = q = 5 μC and σ =
charge

area
=

charge

4 π r2
=

5×10-6 C

4 π (0.06 m)2
= 1.10×10-4

C

m2

(b) Now consider the case where the point charge at the center is q = -6 μC and the conductor has a net charge of Q = 4 μC. What is Er,
the  radial  component  of  E,  at  a  distances  of  r = 3 cm,  r = 5 cm and r = 7 cm.  Also describe  the  charge distribution by giving both  the
charge and surface charge density at both surfaces of the conductor, at 4 cm and 6 cm.

Solution
At r = 3 cm, we have the r < a  case. 

Er = ke
q

r2
= 9.0×109

N ·m2

C2

-6×10-6 C

(0.03 m)2
= -6×107

N

C
At r = 5 cm, we have the a < r < b  case. 

Er = 0

At r = 7 cm, we have the r > c  case. 

Er = ke
q + Q

r2
= 9.0×109

N ·m2

C2

(-6 + 4)×10-6 C

(0.07 m)2
= -3.67×106

N

C
For the charges and charge densities: At r = 4 cm

charge = -q = +6 μC and σ =
charge

area
=

charge

4 π r2
=

6×10-6 C

4 π (0.04 m)2
= 2.98×10-4

C

m2

At r = 6 cm

charge = q + Q = -2 μC and σ =
charge

area
=

charge

4 π r2
=

-2×10-6 C

4 π (0.06 m)2
= -4.42×10-5

C

m2
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