
Chapter C

Current and DC Circuits
Blinn College - Physics 1402 - Terry Honan

C.1 - Current and Current Density

Basic Definitions

If ΔQ is the charge that passes through some surface, usually a cross-section of a wire, in the small time Δt then the current I is defined by

I =
ΔQ

Δt

Units:  The SI unit for Current is: ampere = A = C /s

Example C.1 - Battery on a Notebook Computer

A notebook computer has a battery with a capacity of 6.41 A ·h and a voltage of 20 V. 

(a) What is the total charge and the corresponding number of electrons stored in this?

Solution
Since an ampere is a coulomb/second then an A ·h is a measure of charge. This problem is just a conversion of units

Q = 6.41 A ·h = 6.41 A×3600 s = 23000 C

Since charge is quantized we can find the number of elementary charges which is just the number of electrons stored.

Q = ne ⟹ n =
Q

e
=

Q

1.60×10-19 C
= 1.44×1023

(b) What is the total energy capacity of this battery?

Solution
ΔU = q ΔV  is the energy when a charge q moves across a potential difference ΔV .  Here we have V = ΔV  = 20 V and q = Q.

ΔU = q ΔV = QV = 461000 J

C.2 - Resistance

Ohm's  Law

In electrostatics, currents are not allowed. We saw that the electrostatic electric field inside a conductor had to be zero and that implied  that
the voltage across a conductor also became zero. An electric field in a conductor or a voltage across one will necessarily produce a current.

The conductivity and resistivity are properties of a material.  For an object, like a wire, we can define a quantity called the resistance R by the
macroscopic form of Ohm's law

V = I R

R = Resistance



Units:  The SI unit for Resistance is: ohm = Ω = V /A

V = I R relates the voltage across a resistor to the current through it.  When passing through the resistor in the direction of the current, it is a

voltage drop, a decrease in potential. To measure the voltage across a resistor connect the leads of the voltmeter to either side of the resistor.  To
measure the current through a resistor connect the ammeter in line with the resistor.

V

A
Use of Voltmeter Use of Ammeter

How does the resistance of a wire vary with its dimensions. Take the wire to be a long cylinder with length L and cross-sectional area A.

Double the length of a wire by putting identical wires end to end as shown in (a) below. Keep the current through the long wire the same; the
voltage across each short segment will stay the same and the total voltage across the long wire will double. This shows its resistance, the voltage

per current, doubles and that resistance is proportional to the length of a wire: R ∝ L. Next, model doubling the area by placing two wires side-by-
side as in (b) below. If we keep the voltage across both the same the the current through each will stay the same and the total current will then

double.  Since  resistance  is  voltage  per  current,  the  resistance  is  halved;  the  resistance  is  inversely  proportional  to  the  cross-sectional  area:
R ∝ 1 /A .

Combining  these  proportionalities  we  get:  R ∝ L /A.  We  introduce  a  material-dependent  constant  of  proportionality  ρ,  the  resistivity.  A  good
conductor has a small resistivity and a poor conductor has a resistivity with a high value.

R =
ρ L

A
.

Units:  The SI unit for resistivity is: Ω ·m

Material Resistivity - ρ (Ωm)

Copper 1.68×10-8

Aluminum 2.65×10-8

Silver 1.47×10-8

Gold 2.22×10-8

Glass 105 - 108

Resistivities for Different Materials at 20°C

Example C.2 - Resistance of a Copper Wire

The resistivity of copper is 1.68×10-8 Ω ·m. Consider a copper wire with a length of 750 m and a diameter of 3 mm.

(a) What is the resistance of this wire?

Solution

ρ = 1.68×10-8 Ω ·m , L = 750 m and d = 3×10-3 m ⟹ A = π r2 = π
d

2

2

= 7.0686×10-6 m2

We can now find the wire’s resistance.
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R =
ρ L

A
= 1.78Ω

(b) What is the current through the wire if it is connected across a 1.5 V battery?

Solution

V = 1.5 V and V = IR ⟹ I =
V

R
= 0.841 A

Variation of Resistance with Temperature

Resistance in a metal is caused by collisions between the moving electrons with the vibrating atoms.  If there were no vibration in the atoms
there would be no collisions and the resistance would be zero.  As the temperature is increased the vibrational motion of the atoms increases and
the collisions increase.  Because of this, resistance in metals increases with temperature. 

As  temperatures  approach  absolute  zero,  the  vibrational  motion  of  atoms  approaches  its  minimum  value  consistent  with  quantum  physics.
We  would  expect  the  resistivity  to  go  to  zero  as  temperatures  approach  absolute  zero.  But  what  we  observe  in  some  materials  is  much  more
dramatic; below some low critical temperature TC, the resistivity abruptly goes to exactly zero. This is known as superconductivity. Superconduc-
tivity was first discovered in 1911 in a solid mercury wire at TC = 4.2 K. In 1986 a new class of materials was discovered; these new materials
have critical temperatures greater than 90 K.

Semiconductors have different temperature behavior than metals; the resistivity of pure semiconductors decreases with temperature. This is
because, unlike metals, more charge carriers are available for conduction at higher temperatures.

C.3 - Power and DC Voltage Sources

Power in General

Power is generally defined as the rate that work is done or, more generally, the rate that energy is used or provided.

 =
ΔEnergy

Δt

When a charge Q is moved across a potential difference ΔV  the potential energy difference is ΔU = Q ΔV .  It follows that when an small charge
ΔQ moves across a voltage of V the infinitesimal energy change is ΔU = V ΔQ.  Writing  = ΔU /Δt and using I = ΔQ /Δt gives

 = V I.

Power Dissipated in a Resistor

Ohm's  law V = I R  relates  the voltage  drop across  a  resistor to  the  current through  it. Using  it  we can  write equivalent  expressions  for the
power dissipated in a resistor.

 = V I = I2 R =
V2

R

The energy lost to resistance is dissipated as heat.  This is called Joule heating.

Terminal Voltage

I ℰ r

Vt

- +

Treat  every  DC  voltage  source  as  an  ideal  voltage  source  with  EMF  (electromotive  force)   ℰ  in  series  with  its  internal  resistance  r.   The
voltage across the terminals Vt of the source is then

Vt = ℰ - I r.
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When there is no load,  I = 0, the terminal voltage Vt is the same as the EMF ℰ.  With a load the terminal voltage drops.

Example C.3 - Terminal Voltage

The  measured  voltage  across  a  D-cell  battery  is  1.486 V  when  no  current  is  drawn.  When  the  battery  produces  a  250 mA  current,  its
measured voltage is 1.454 V. What is the internal resistance of the battery?

Solution
The voltage with no load (current) is the EMF.

ℰ = 1.486 V

The other voltage, with the current, is the terminal voltage.

I = 0.250 A and Vt = 1.454 V

We then solve for the internal resistance.

Vt = ℰ - I r ⟹ r =
ℰ - Vt

I
= 0.128Ω

Circuit Diagrams and Nodes

A real-world wire has resistance.  When we draw circuit diagrams we always consider the wires to be perfect conductors.  Since R = 0, the
voltage drop across a wire is zero.  A wire in a circuit diagram is a point of constant voltage; this is what we call a node.  The most effective way
to analyze complex circuit diagrams is in terms of nodes and the circuit elements (voltage sources, resistors, capacitors, etc.) connected between
nodes.

When it is necessary to consider the real-world resistance of a wire one can simply view it as an ideal conductor with a resistor with ρ ℓ /A
of resistance placed in line.

Voltages  in  circuits  are  always  differences.   If  we  choose  some  node  to  be  zero  voltage  then  we  can  assign  a  voltage  to  each  node  in  a
circuit.  A point of zero voltage in a circuit is called a ground.

C.4 - Combinations of Resistors

R1 R2

R1

R2

Series Parallel

Any combination of resistors with one wire in and one wire out can be reduced to its equivalent resistance.  If the combination were  placed
inside some black box then outside the box the combination would look like a single resistor, which we call its equivalent resistance.  For series
and parallel resistor combinations, there are simple formulas for finding these equivalent resistances.

I R1 R2 I

I1 R1

I2 R2

I Req I Req

Series Parallel

Series

Resistors are in series when all the current through one passes through the others; there is no branching between them.  The total voltage is
the sum of the voltages.  

I = I1 = I2 = … and V = V1 + V2 + …

Using V = I R gives I Req = I R1 + I R2 + ….  The equivalent resistance of series resistors is given by
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Req = R1 + R2 + ….

Parallel

Resistors are in parallel when the voltage across the one is the same as the voltage across the others.  Resistors are in parallel when they are
connected between the same two nodes, where a node is a point of constant voltage in a circuit.  The current branches and the total current is the
sum of the currents.  

V = V1 = V2 = … and I = I1 + I2 + …

Using I = V /R gives V Req = V /R1 + V /R2 + ….  The equivalent resistance of series resistors is given by

1

Req
=
1

R1
+
1

R2
+ ….

Example C.4 - Identifying Nodes

What is the equivalent resistance of this network of resistors?

R1 R2 R3

Solution
Recall that a wire in a circuit diagram is a perfect conductor, so there is no voltage drop across wires in circuit diagrams. A node
is a point of constant potential in a circuit. To identify nodes follow along a wire as far as possible without hitting some circuit
element, like a resistor, voltage source or capacitor. There are two nodes, the points drawn in the diagram; label the node on the
left as 1 and the node on the right as 2. It is useful, conceptually, to mark nodes with colors. Using green for node 1 and red for
node 2, then trace as far as you can go along perfect conductors until you hit a resistor. This gives the picture on the left below.

1 2

R1 R2 R3 R2

R1

R3

⟹
1 2

The next step is to rewrite the nodes as points and draw the resistors as they are connected between the nodes. This is the picture
on the right, above. All three resistors are connected across the same two nodes so they are in parallel. We can then write down
the equivalent resistance.

Req =
1

R1
+
1

R2
+
1

R3

-1

Example C.5 - A Resistor Circuit

36V

4Ω 24Ω

12Ω

The diagram shows three resistors connected across a 36V battery. Complete the table with the voltage across, the current through and
the power dissipated in each of the three resistors.

4 Ω 12 Ω 24 Ω

V

I
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Solution
First find the equivalent resistance across the battery. The 12 Ω and 24Ω resistors are in parallel. Call their equivalent R∥.

1

R∥

=
1

12Ω
+

1

24Ω
=
1

8Ω
⟹ R∥ = 8Ω

This resistor is then in series with the remaining 4 Ω resistance. This gives the overal equivalent resistance.

Req = 4Ω + 8Ω = 12Ω

This equivalent resistance determines Ibattery the current that the battery will provide. The 4 Ω resistor is in series with the battery

so  the  current  provided  by  the  battery  will  pass  through  the  4 Ω  resistor.  This  allows  us  to  begin  filling  in  the  table  with  the
current through the  4Ω resistor.

I4Ω = Ibattery =
Vbattery

Req
=
36 V

12Ω
= 3 A

With a table like this, once one thing in a column is known, we can find the rest of that column using V = I R and  = I V

V4Ω = I4Ω 4Ω = 12 V

We can also find the power. 

4Ω = I4Ω V4Ω = 36W

The voltages across the 12Ω and 24Ω resistors are equal, because they are in parallel and that voltage added to V4Ω  will give
the total voltage Vbattery.

V12Ω = V24Ω = Vbattery - V4Ω = 36 V - 12 V = 24 V

I = V /R allows us to find the currents through the 12 Ω and 24Ω resistors.

I12Ω =
V12Ω

12Ω
=
24 V

12Ω
= 2 A and I24Ω =

V24Ω

24Ω
=
24 V

24Ω
= 1 A

We can also use  = I V  to finish the table with the last power values.

12Ω = I12Ω V12Ω = 48W and 24Ω = I24Ω V24Ω = 48W

4 Ω 12 Ω 24 Ω

V 12 V 24 V 24 V

I 3 A 2 A 1 A

 36W 48W 24W

C.5 - Combinations of Capacitors

C1 C2

C1

C2

Series Parallel

As we saw for resistors, any network of capacitors can be reduced to an equivalent capacitance.  For capacitors its charge plays the role the
current played in resistors.  (Recall that I = ΔQ /Δt.) 
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C1 C2

C1

C2

Ceq Ceq

Series Parallel

+Q -Q +Q -Q

+Q -Q

+Q2

+Q -Q

-Q2

+Q1 -Q1

 The voltage to charge relation for a capacitor is

V =
Q

C
.

Series

In the case of series resistors the charge on each capacitor is the same and both are the same as the charge on the equivalent.  The voltages
add.

Q = Q1 = Q2 = … and V = V1 + V2 + …

Using the voltage to charge relation gives  Q Ceq = Q /C1 + Q /C2 + … which gives the expression for equivalent capacitance

1

Ceq
=
1

C1
+
1

C2
+ ….

Parallel

For parallel resistors the voltages are equal and the charges add.

V = V1 = V2 = … and Q = Q1 + Q2 + …

Using Q = C V  gives Ceq V = C1 V + C2 V + …  giving

Ceq = C1 + C2 + … .

Note that the series and parallel formulas for capacitors are reversed relative to their resistor counterparts.

Example C.6 - Equivalent Capacitance

What is the equivalent capacitance of the capacitor network shown?

2 μF3 μF

3 μF

9 μF

8 μF

4 μF

Solution
First do a nodal analysis on this capacitor network. It is then clear how they are connected.
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2 μF3 μF

3 μF

9 μF

8 μF

4 μF

1 2

3

⟹
1 2

3

3 μF

9 μF

3 μF

8 μF

2 μF

4 μF

The  two  3 μF  and  the  9 μF  capacitors  are  in  parallel,  as  are  the  2 μF  and   8 μF  capacitors.  We  add  to  find  the  equivalent
capacitances.

3 μF + 3 μF + 9 μF = 15 μF and 2 μF + 8 μF = 10 μF

These two resulting capacitances are in series

1

15 μF
+

1

10 μF

-1

= 6 μF

and this 6 μF is then in parallel with the final 4 μF giving the overall capacitance.

Ceq = 6 μF + 4 μF = 10 μF

C.6 - Kirchhoff’s Rules
Kirchhoff's rules are used to solve for the currents in the case of a circuit involving many resistors and DC voltage sources.  A junction is  a

point in the circuit where three or more wires meet; if there are just two wires it is just a bend in the wire and not a junction.  For every branch in
the  circuit  we  can  define  a  current.   Kirchhoff's  rules  gives  a  set  of  linear  equations  in  the  currents.   It  is  not  essential  to  choose  the  proper
direction for the currents, and in fact one typically doesn't know the current directions until a solution is found.  If the chosen current direction is
wrong then that current will be negative when the solution is found.

Junction Rule

At every junction in a circuit the total current in is equal to the total current out.

Iin = Iout.

In  every  case  (at  least  where  the  circuit  is  one  connected  piece)  the  junction  rule  equations  will  not  be  independent;  there  will  always  be  one
equation more than is needed.  Summing all the equations gives ∑I = ∑I  which is equivalent to 0 = 0.  (This is because every current leaves one
junction and enters another.)  Because of this any one junction rule equation is the negative of the sum of the others.  To get an independent set
of equations one must delete one (any one) of the equations.

Loop Rule

Around every closed loop in a circuit the sum of all the voltage gains is zero.

ΔV = 0

The sign conventions are: 

When moving through a resistor in the direction of the current:  ΔV = -I R.
When moving through a resistor opposite the current:  ΔV = +I R.

When moving  through a DC source from - to + terminals:  ΔV = +ℰ.
When moving  through a DC source from + to - terminals:  ΔV = -ℰ.
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I R ℰ

ΔV=-IR ΔV=+ℰ

ΔV=+IR ΔV=-ℰ

To avoid non-independent equations consider only the smallest loops.

Example C.7 - A Two-loop Circuit

Solve the following 2-loop circuit using Kirchhoff’s rules for the three currents shown. 

20Ω

30Ω

I1

10Ω

I3

8V

I2

6V

Solution
First, label the junctions and then loops. We have two junctions and two loops.

20Ω

30Ω

I1

10Ω

I3

8V

I2

6V

1

2

1 2

Using ∑Iin = ∑Iout for both junctions gives.

I2 = I1 + I3 (Junction 1)

I1 + I3 = I2 (Junction 2)

Notice  that  the  equation  for  the  second  junction  is  redundant.  Just  keep  the  first.  Now  apply  the  loop  rule  ∑ΔV = 0,  using  the
sign conventions, to get the last two equations needed to solve for the three unknown currents. Ignore the units while writing the
equations.

0 = 8 - 30 I1 + 10 I3 (Loop 1)

0 = 6 - 10 I3 - 20 I2 (Loop 2)

Use the junction rule equation to eliminate I2 from the second loop equation

0 = 6 - 10 I3 - 20 (I1 + I3) ⟹ 0 = 6 - 20 I1 - 30 I3 ⟹ 20 I1 + 30 I3 = 6

Rewrite the first loop equation

30 I1 - 10 I3 = 8

To eliminate I3 multiply this equation by 3 and add it to the other.

3×(30 I1 - 10 I3) = 8×3

20 I1 + 30 I3 = 6
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This gives

110 I1 = 30 ⟹ I1 =
30

110
A = 0.27273 A

Solving for I3 gives

30 I1 - 10 I3 = 8 ⟹ I3 =
30 I1 - 8

10
= 0.01818 A

Now solve for I2.

I2 = I1 + I3 = 0.29091 A

The final solution can now be written.

I1 = 0.273 A, I2 = 0.291 A and I3 = 0.0182 A

C.7 - RC Circuits
When the switch is thrown to the Charging position the current flows from the battery to charge the capacitor.  In the Discharging position

the charge flows from the capacitor and its energy is dissipated in the resistor.  The charge on  the capacitor is related to the current in the wire by

I =
ΔQ

Δt
for small Δt

Note that when the capacitor is discharging the charge is decreasing and thus the current is negative.

C R

ℰ
Charging

Discharging

Discharging

For the discharging case, applying Kirchhoff’s loop rule to the circuit gives:

0 = I R +
Q

C
.

Writing the current in terms of the charge gives.  

0 = R
ΔQ

Δt
+
1

C
Q or

ΔQ

Δt
= -

Q

τ

where τ is defined as the time constant.

τ = R C

Note that τ is a time.

Take the initial charge to be Q0. Solving the equation for t is a calculus problem. We will just write down the solution.

Q(t) = Q0 e
-t/τ.

This is an exponential decay. After on time constant τ the charge drops to 1/ of its initial value. A small time constant means a rapid decay and
a large time constant means a slow decay.
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t

Q

Q0

-1Q0

τ

Interactive Figure - Discharging an RC Circuit

The current is negative, since the charge is decreasing, and is given by

I(t) = -
Q0

τ
e-t/τ.

Note that with this exponential decay, the charge on a capacitor never goes fully to zero but after several time constants it becomes very small.

Charging

The loop rule for the charging case gives:

0 = ℰ - I R -
Q

C

and we can rewrite this as:  

ℰ = R
ΔQ

Δt
+
1

C
Q

Using the same time constant τ we can write down the solution where we take the initial charge, at time zero, to be zero.

Q(t) = Q∞ 1 - e-t/τ where Q∞ = ℰC.

t

Q

Q∞=ℰ C

(1--1)Q∞

τ

Interactive Figure - Charging an RC Circuit

The current is now positive and is exponentially decaying.

I(t) =
ℰ

R
e-t/τ

Example C.8 - An RC Circuit

Consider a 50 μF capacitor, a 12 V battery and a 300 Ω resistor.

(a)  If  these  three  components  are  connected  in  a  series  loop  circuit  at  time  zero,  then  what  are  the  charge  on  the  capacitor  and  current
through the resistor 20 ms after the circuit is connected.
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Solution

c = 50×10-6 F, ℰ = 12 V and R = 300Ω

We first need to find the time constant τ.

τ = RC = 0.015 s

Using the time of t = 20 ms = 0.020 s we can then use the charging formulas for both charge and current as functions of time to
find Q and I.

Q(t) = ℰ C 1 - e-t/τ ⟹ Q(20 ms) = 4.42×10-4 C

I(t) =
ℰ

R
e-t/τ ⟹ I(20 ms) = 0.0105 A

(b) Suppose the circuit in part (a) is allowed to fully charge before the circuit is disconnected and the capacitor is connected across only
the resistor. What is the charge on the capacitor and current through the resistor just after the circuit is connected.

Solution
To find the initial charge on the capacitor Q0, we need to use Q∞ for a charging capacitor.

Q(0) = Q0 = Q∞ = ℰC = 6.0×10-4 s

The initial current is found using the discharging current formula and that 0 = 1. The time constant τ is the same as in part (a).

I(0) = -
Q0

τ
e-t/τ = -

Q0

τ
e0 = 0.040 A

(c) How long does it take for the charge on the discharging capacitor in part (b) to drop to 2% of its initial charge?

Solution
We need to find t when Q(t) = 0.020Q0 for a discharging capacitor.

0.020Q0 = Q(t) = Q0 e
-t/τ ⟹ 0.020 = e-t/τ

The inverse function for the exponential is the natural log function, ln. If y = x then x = ln(y) = x.

-t /τ = ln(0.020) = -3.91202 ⟹ t = 3.91202 τ = 0.587 s
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