
Chapter D

Magnetism
Blinn College - Physics 1402 - Terry Honan

D.1 - Magnetic Dipoles and Magnetic Fields

Analogy to Electric Fields

There are two types of "magnetic charge" or poles, North poles N and South poles S. Playing with bar magnets demonstrates that like poles
repel and unlike attract.  This is analogous to the situation we had with electric charge.  This analogy is a deep one and is called Electromagnetic
duality.  North and South poles are related to the magnetic field B as positive and negative electric charges are to the electric field.

N and S are to B
as

+ and - are to E

North poles experience a force in the direction of the magnetic field and south poles are pushed opposite the field.

Gauss's Law for Magnetism and the Absence of Isolated Poles

Isolated  magnetic  poles  could  exist  but  so  far  none  have  ever  been  observed.   Gauss's  law  in  the  electric  case  Φe = ∑ E⊥ A = qenclosed/ε0,
where Φe  is the electric flux through a closed surface. We now have added the “e” subscript to the flux to distinguish the electric flux from the
magnetic flux, which we will now consider. We can interpret Gauss’s law as stating that electric field lines begin at isolated positive charges and
end at isolated negative charges. The absence of isolated magnetic poles implies that magnetic field lines never begin or end; they either form
closed loops or go off to infinity. The nonexistence of isolated magnetic poles implies that the right hand side of Gauss's law for magnetism is
zero.

Φm = B⊥ A = 0 (closed surface)

Magnetic Dipoles

Recall  that  an electric  dipole  was some charge configuration with zero net  (electric)  charge,  but  a  net  separation of  charge.  Although we
cannot have isolated magnetic pole, we can have magnetic dipoles. A permanent magnet is a magnetic dipole, there is as much north as there is
south but they are separated.

If we apply Gauss's law for magnetism to a magnet and put a Gaussian surface around the North pole then there is magnetic flux leaving the
surface  at  the  end  of  the  magnet.   For  the  flux  to  be  zero  through this  Gaussian  surface  the  field  lines  inside  the  magnet  must  close  back  on
themselves and form closed loops.  Because of this if a bar magnet is cut in half then it doesn't split into a pair of isolated poles; it becomes two
smaller dipoles.

NS

Image on the left shows a bar magnet and its magnetic field. On the right we see the field lines inside.

A bar magnet is a magnetic dipole and magnetic dipoles ��experience a torque in an external magnetic field.
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D.2 - Force on Moving Charges and Currents
Electricity and magnetism are not separate forces, where electric fields just exert a force on electric charge and magnetic fields exert a force

on magnets.  Instead  electricity and magnetism are aspects of the same force called electromagnetism.  Magnetic fields cause forces on moving
(electric) charges and currents.

Magnetic Force on Moving Charges
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v⊥=vsinθ

B B⊥=Bsinθ
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If a charge q is moving with a velocity v in a magnetic field B, then the force F has a magnitude of

F = q v B sinθ = q v⊥ B = q v B⊥

In  this  expression,  θ  is  the  angle  between  the  v  and  B  vectors;  the  component  of  v  perpendicular  to  B  is  v⊥ = v sin θ,  and  B⊥ = B sin θ  is  the
component of the field perpendicular to the velocity.

The velocity and field vectors define a plane and the force is in the direction perpendicular to the plane. There are two possible perpendicu-
lar directions. To determine which gives the direction of the magnetic force, use the right had rule: put your thumb (of your right hand) in the
direction  of  the  velocity  and  your  fingers  in  the  direction  of  the  magnetic  field.  Your  palm  points  in  the  direction  of  the  force  on  a  positive
charge. If the charge is negative then the force is opposite that.

Out of

Into

Figure:  The  convention we use to represent the third dimension relative to some two 
dimensional figure is to use a dot to represent "out of" and an × to represent "into".  A useful 

way to remember this is with an arrow; if it points at you, it is a dot and away an ×.

Units:  The SI unit for magnetic field is:  tesla = T = N
A·m

Example D.1 - The Earth’s Magnetic Field

The earth’s magnetic field at Bryan Texas has magnitude 47.3 μT. It is directed 2.85° east of true north and has a “dip angle”, the angle
below horizontal, of 59.4°. For the purposes of this example we will take magnetic north as north.

(a) What are the northward and downward components of the earth’s field.
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Solution

(b) What is the force (both magnitude and direction) on an electron moving downward at 2.5×106 m /s in this field? Give the direction
as north, south, east, west, up or down.

Solution

Force on Currents

We want  an  expression  for  the  force  on  a  segment  of  wire  of  length  L  carrying  a  current  I  in  a  magnetic  field  B.  Model  the  current  by
positive charges flowing through the wire at a speed v in the direction of the current. For the segment of length L the time it takes for the charge
to  move  the  distance  L  is  Δt = L /v. Since  current  is  charge  per  time  we  can  write  the  total  amount  of  moving  charge  in  this  segment  as
q = I Δt = I L /v. We can then write an expression for the force on the segment.

Δt = L /v and q = I Δt = I L /v ⟹ F = q v B sinθ =
IL

v
v B sinθ = ILB sinθ

We can, as before, write B⊥ = B sin θ as the perpendicular component of the field in the direction of the current. the magnitude of the force on a
segment of wire of length L carrying a current I as

F = ILB sinθ = ILB⊥

where θ is now the angle between the field and the current.

I

L

B B⊥=Bsinθ
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Since positive charges are moving in the direction of  the current  the right  hand rule  for  the direction of  the force is  similar.  Your thumb
points in the direction of the current, your fingers in the direction of the field and then the force on the wire is in the direction of the palm.

Motion of Charged Particles

Any force that acts perpendicularly to the velocity of a particle doesn't affect the speed of the particle; it  only alters its direction.  This is
always the case with the magnetic force, since it is perpendicular to the velocity.  Suppose a particle with speed v is shot into a region of uniform
magnetic field with the velocity perpendicular to the field then the magnitude of the force is just  F = q v B.  Since the speed and the magnitude
of the force are constant  and the force and velocity are perpendicular,  the motion will  be uniform circular  motion.   Using the acceleration for
uniform circular motion  ac = v2 r and Newton's second law we get:

F =m a ⟹ q v B =m
v2

r
⟹ r =

m v

q B
.

If a charged particle moves in a uniform magnetic field with a velocity that is not perpendicular to the field, then the perpendicular compo-
nent changes as before and the parallel component is unchanged.  The resulting motion is a combination of linear and circular motion, giving a
helix.  Thus, the general shape of the path of a charged particle in a uniform magnetic field is helical.  

D.3 - Sources of Magnetic Fields - Ampere’s Law

Ampere’s Law

In Chapter 19 we saw that electric field exert forces on charges and that charges are the source of electric fields; we discussed in detail how
to find electric fields due to charges. For magnetism, we have seen that there are forces on moving charges and currents in magnetic fields. We
now need to show that moving charges and currents are sources of magnetic fields.

Ampere’s  Law is  related sums we have seen in  two previous chapters.  In  Chapter  20 we saw that  the  electric  potential  and electric  field
were related by the sum over small displacements making a path: ΔV = -∑E∥ Δs. In Chapter 19 we had Gauss’s law relating the flux, a sum over
small surfaces that combine to form a closed surface, to the total charge enclosed by that surface; ∑ E⊥ A = qenclosed / ε0. Ampere’s law involves
summing E∥ Δs around a closed path, a loop, and relating that to the total current enclosed by that loop.
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Ampere’s  Law is  related sums we have seen in  two previous chapters.  In  Chapter  20 we saw that  the  electric  potential  and electric  field
were related by the sum over small displacements making a path: ΔV = -∑E∥ Δs. In Chapter 19 we had Gauss’s law relating the flux, a sum over
small surfaces that combine to form a closed surface, to the total charge enclosed by that surface; ∑ E⊥ A = qenclosed / ε0. Ampere’s law involves
summing E∥ Δs around a closed path, a loop, and relating that to the total current enclosed by that loop.

B∥ Δs = μ0 Ienclosed (Δs is small)

Δs

B

The sign convention for the currents in Ienclosed requires some discussion. There is a second right hand rule that relates a sense of circulation
or rotation to a perpendicular direction; wrap the fingers of your right had in the direction of circulation and your thumb is in the perpendicular
direction. In Physics I, this was used to relate a sense of rotation to a direction of the angular velocity vector; rotating clockwise (when viewed
from above) corresponds to a downward angular velocity and counterclockwise gives upward. 

We have introduced a new constant μ0. This is a fundamental constant, like ε0.

μ0 = 4 π×10-7
N

A2

Note that we can write this with different units: NA2 = T ·m /A.

Example D.2 - Finding  Ienclosed

I1

I4

I6

I2
I3

I5

The diagram above shows a closed contour for Ampere’s law. There are six currents which pass either into the page ( ) or out of it ( ).
What is Ienclosed for this contour?

Solution
Since the contour is counterclockwise, the right hand rule connects that with currents out of the page. The “out of” currents are
positive and the “into” currents are negative. Currents I3 and I4 are not enclosed and do not contribute. The result is:

Ienclosed = -I1 + I2 + I5 - I6
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The Long Straight Wire

As we have seen, magnetic field lines either form closed loops or go off to infinity. For a long straight wire the field lines cannot go out to
infinity, since that would imply a net magnetic pole along the wire. So in this case the field lines must circulate around the wire.

I

B

B

B

B B

B

B

B

r

The magnetic field circulates around a long straight wire. Here the current I is 
out of the page, the counterclockwise contour for Ampere’s law is 

shown in green and the magnetic fields are shown as vectors in red.

When summing around the contour ∑B∥ Δs the magnetic field is parallel to the Δs vectors and is constant in magnitude. It follows that B can be
taken out of the sum and ∑Δs is the total arc length, the circumference 2 π r.

B∥ Δs =B Δs = BΔs = B 2 π r

The enclosed current is just the wire’s current Ienclosed = I. Ampere’s law gives us the magnetic field due to the solenoid.

B∥ Δs = μ0 Ienclosed ⟹ B 2 π r = μ0 I

We have then the field a distance r from the long wire is 

B =
μ0 I

2 π r
To get the direction of the field use the circulation right had rule described above. The field lines circulate around the wire so put your thumb in
the direction of the current and the fingers wrap around in the direction of the field.

Example D.3 - The Field of a Long Straight Wire

A horizontal wire runs east-west with a 20 A current to the west.

(a) What are the magnitude and direction of the magnetic field 3 cm directly below the wire. Give the direction answer as north, south,
east, west, up or down.

Solution

The Long Solenoid
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Cross section of a six-turn solenoid

The figure above shows a cross section of a solenoid with 6 turns and a finite length. A long solenoid is infinitely long and the wires are 
tightly packed.

1

3 24 I

B

L

Cross section of a long solenoid

For an (infinitely) long solenoid take the current to be I and the density of turns to be n.

n =
 of turns

length
The field inside the solenoid is uniform and the field outside is zero.  (The field outside approaches zero as the length become infinite.)  Choose
the contour to be four segments as shown

B∥ Δs =
1

B∥ Δs +
2

B∥ Δs +
3

B∥ Δs +
4

B∥ Δs

= B L + 0 + 0 + 0

There are n ℓ turns through the contour giving

Ienclosed = n L I

It follows from Ampere's law that the field anywhere inside a long solenoid is

B = μ0 n I.

To  get  the  direction  of  the  field  use  the  circulation  right  hand  rule.  Now the  current  circulates  and  the  field  is  straight,  so  wrap  your  fingers
around the current loops in the direction of the current and your thumb is in the direction of the field inside.

Example D.4 - A Long Solenoid

Consider  a  solenoid  with  a  circular  cross-section  with  a  radius  of  3 cm  and  a  length  of  75 cm,  200  turns  with  a  vertical  central  axis
carrying  a  12 A current  that  is  clockwise  when  viewed from above.  Take  up  to  be  the  z-direction.  You may consider  the  length  long
compared to the radius.
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Consider  a  solenoid  with  a  circular  cross-section  with  a  radius  of  3 cm  and  a  length  of  75 cm,  200  turns  with  a  vertical  central  axis
carrying  a  12 A current  that  is  clockwise  when  viewed from above.  Take  up  to  be  the  z-direction.  You may consider  the  length  long
compared to the radius.

(a) What is the magnetic field inside the solenoid. Give both magnitude and direction.

Solution

D.4 - Current Loops As Magnetic Dipoles and Torque

Electromagnets and Permanent Magnets as Dipoles

Circular Current Loop and Flat Round Magnet
Magnetic dipoles experience a torque in a magnetic field.  A torque is  a rotational force and a dipole will  rotate to align with a field.  We

have  seen  that  permanent  magnets  are  dipoles.  We  will  now  see  that  current  loops  and  coils  are  magnetic  dipoles  as  well.  To  first  see  this
compare the fields of permanent magnets to coils (electromagnets) of the same shape.

On the left is a flat circular magnet (like a refrigerator magnet) with north on the top. On the right is circular current loop of the same shape and size.

We will also give a formula for the magnetic field at the center of a loop of radius R with current I.

B =
μ0 I

2 R
To get the direction of the field at the center use the right hand rule for circulation. Wrap your fingers with the current and the thumb points in
the direction of the field.
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Tightly Wound Solenoid and Magnet

A solenoid with tightly packed wires (right) is equivalent to a permanent magnet of the same shape.

Torque on a Current Loop

Now consider an L×W  flat rectangular loop with a current I sitting in a uniform field as shown below. The angle between the normal to the
loop and the magnetic field is θ. There are two normals to the surface but we choose the normal to be consistent with the circulation right hand
rule; wrap your fingers in the direction of the current around the loop and the thumb says which normal vector to choose.

B

B
Normal to Surface

θ

θ
I

I

F

F

L

2
sinθ

L

Front Edge View

Two views of an L×W current loop with current I in a magnetic field B. The angle between the field and the normal to the loop is θ. The forces on the long sides 
of length L are outward and produce no torque. The forces on the short sides of length W creates a torque that tends to align the normal to the loop with the 

field.

The forces on the two long sides (length L) are outward and produce no torque. The short sides (length W) do produce a torque. the forces on the
short sides both have the same magnitude.

F = I L B⊥ = I W B

From Physics I, recall that the torque τ is given by τ = r⊥ F, where r⊥is the component of r perpendicular to the force, where r the vector from
the origin to where the force acts. r⊥ is known as the lever-arm. In this case we get the torque on one segment τsegment is

r⊥ =
L

2
sinθ ⟹ τsegment = r⊥ F =

L F

2
sinθ =

L I W B

2
sinθ

There are two segments and the torque on both are the same, so on the loop we have τ = 2 τsegment. We will write the result in terms of the area of
the loop A = LW. It follows now that the total torque on the loop is
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τ = I A B sinθ = I A B⊥.

In the second expression, B⊥  is the component of the field perpendicular to the normal. The loop is a magnetic dipole and will rotate so that the
normal rotates to align with the loop.

Torque on an N-turn Coil

We can build up a general flat loop by breaking the loop into rectangles. It follows that the total torque on the flat loop is the sum over the
torques on all the small rectangles and that gives the same formula τ = I A B sinθ., but now with A being the total area. Now consider an N-turn
coil or solenoid. The total torque now gets multiplied by the number of turns N.

τ = N I A B sinθ = N I A B⊥

In this formula, A is the cross-sectional area of each loop. The coil will rotate so that the unit normal of each loop (given by the right hand rule)
will rotate to align with the field.

Example D.5 - A Long Solenoid (continued)

Consider  a  solenoid  with  a  circular  cross-section  with  a  radius  of  3 cm  and  a  length  of  75 cm,  200  turns  with  a  vertical  central  axis
carrying  a  12 A current  that  is  clockwise  when  viewed from above.  Take  up  to  be  the  z-direction.  You may consider  the  length  long
compared to the radius.

(b) If this solenoid sits in a magnetic field of B = 2.3 x - 3.5 z mT, then what is the torque on the solenoid due to this field?

Solution
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