
Chapter E

Faraday’s Law and Inductance
Blinn College - Physics 1402 - Terry Honan

Faraday's  law  describes  how  a  generator  works.   A  changing  magnetic  flux  through  a  conducting  loop  induces  an  EMF  (Electromotive
Force) around the loop.   Faraday's law will become our fourth of Maxwell's equations.

E.1 - Faraday’s Law
In the previous chapter we introduced magnetic flux in our brief discussion of Gauss’s law for magnetism. The flux is Φm = ∑ B⊥ A. Now

we will omit the m subscript. 

Φ = B⊥ A

IF we have a flat surface and a uniform magnetic field then the flux becomes

Φ = B⊥ A = BA cos θ

where we defined θ as the angle between the normal to a surface and the magnetic field.
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We  can  demonstrate  magnetic  induction  by  moving  a  magnet  toward  a  solenoid  connected  to  a  galvanometer,  where  a  deflection  of  the
galvanometer's needle indicates a current.  Moving the magnet toward the solenoid induces an EMF in the solenoid, which creates a current in
the solenoid-galvanometer circuit.  Pulling the magnet away from the solenoid induces a current in the opposite direction.  If the magnet is at rest
in  the  solenoid  no  current  is  induced.   Moreover,  increasing  the  number  of  magnets  increases  these  effects.   It  is  clear  that  the  induced  EMF
depends on the change in the flux.  If ℰave  is the average induced EMF and Φ is the magnetic flux through each loop of the solenoid then we get
the proportionality

ℰave ∝ ΔΦ.

If the speed of the magnet is increased the effect is enhanced and slowing it diminishes it.  This suggests an inverse proportionality with the time.

ℰave ∝
1

Δt
.

Since in a coil all the loops are connected in series it follows that  ℰave is proportional to the number of loops N.

Combining these proportionalities gives

ℰave ∝ N
ΔΦ

Δt



and it turns out that the proportionality becomes an equality when we consider the magnitude of the average induced EMF ℰave and the absolute
value of the change in flux with time

ℰave = N
ΔΦ

Δt
.

If we consider the polarity (sign) of the induced EMF then this adds a sign, which is known as Lenz's law.

ℰave = -N
ΔΦ

Δt
.

We will discuss Lenz's law in detail later.

Letting Δt go to zero these expressions become

ℰ = N
ΔΦ

Δt
and ℰ = -N

ΔΦ

Δt
(small Δt )

This is analogous to the definitions of average and instantaneous velocity in kinematics where  vave =
Δx

Δt
 and v =

Δx

Δt
(small Δt).

E.2 - Motional EMF
If  a  conductor  moves  in  a  magnetic  field  there  is  a  magnetic  force  on  the  charge  carriers.   This  magnetic  force  does  work  on  the  charge

carriers.  The EMF is the work per charge.

ℰ =
W

q
.

Translation of a Conducting Rod in a Uniform Field

Consider  a  conducting  rod  of  length  ℓ  translating  in  a  uniform  magnetic  field.   Take  the  rod,  its  velocity  and  the  field  to  be  mutually
perpendicular.

B
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+

-
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If q is some charge carrier then the force on it is

F = q v B⊥ ⟹ F = q v B

The work is

W = F Δr∥ = F ℓ = q v B ℓ.

Using  ℰ =W /q  gives the induced EMF across the rod

ℰ = v B ℓ

How  can  one  measure  this  EMF?   If  a  voltmeter  is  connected  across  the  ends  of  the  rod  and  it  is  moved  with  it  then  the  same  EMF  is
induced in the leads to the meter and it reads zero.  To avoid this, imagine the rod moving with its ends sliding along a conducting rail.  If the
voltmeter is connected between the rails then it would read this voltage.

2 | Chapter E - Faraday's Law and Inductance



B

ℓ

Conducting
Rails+

-

v

I
Load

Resistance
R

A DC Generator and Conservation of Energy

In fact, what we have here is a simple DC generator.  Instead of connecting a voltmeter between the rails we could connect anything and  it
would be given a steady DC voltage.  If a DC motor is connected then this motor could do work.  We must address the question of conservation
of energy.  Where does this energy come from?

To see this place a load resistor R across the conducting rails.  Ohm's law gives the current through the load

I =
ℰ

R
.

The rate of power dissipation in the load, which is the power output of the generator, is

out = I ℰ = I v B ℓ,

where we are making the idealizing assumption that all the resistance in the circuit is in the load.

This  is  a  complete  circuit,  so  all  the  current  through  the  load  passes  through  the  rod.   A  current  through  a  conductor  in  a  magnetic  field

creates a backward magnetic force,  Fmag.

Fmag = I ℓ B⊥ ⟹ Fmag = I ℓ B

To  keep  the  rod  moving  at  a  constant  speed  there  must  be  zero  net  force,  so  there  must  be  some  forward  external  applied  force  Fapp.   Making

another idealizing assumption of no friction we get

Fapp = -Fmag ⟹ Fapp = Fmag = I ℓ B

The applied force does work and this is the source of the energy.  The rate that it does work is the power in.  Power is related to force by  

 =
ΔWork

Δt
=
FΔr∥

Δt
= Fv∥ (small Δt)

so we get in this case

in = Fapp v = I ℓ B v.

Comparing this with the power output gives

in = out.

If we relax our idealizing assumptions and include mechanical friction and resistance in the circuit elsewhere than the load then we get

in > out.

Example E.1 - Motional EMF

A  conducting  rod  slides  with  a  speed  of  18 m /s  along  parallel  horizontal  conducting  rails  separated  by  1.2 m.  Suppose  there  is  a
downward magnetic field of 15 mT.

(a) What is the voltage across the rod?

Solution

Using the values v = 18 m /s, ℓ = 1.2 m and B = 15×10-3 T we get

ℰ = v B ℓ = 0.324 V
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(b) Which side of the rod, left or right (relative to the velocity) of the rod, is at higher potential?

Solution
We  need  to  find  the  force  on  a  positive  charge  moving  with  the  rod.  With  your  fingers  down  and  thumb  forward,  your  palm
points to the left. If positive charges are pushed to the left then that is the side at higher potential.

(c) Suppose a load resistance placed across the rails to complete the circuit as a DC generator. If there is a 5.5 mA current flowing, then
what is the load resistance.

Solution
When  you  complete  the  circuit  with  a  resistance  then  we  have,  using  the  EMF  as  a  voltage  and  using  the  current  as

I = 5.5×10-3 A.

V = ℰ = I R ⟹ R =
ℰ

I
= 58.9Ω

(d) What is the backward magnetic force on the rod after the load resistance is added?

Solution

The magnetic force on the rod, now that there is a current, is: F = I ℓ B⊥ = I ℓ B = 9.9×10-5 N

(e) What is the rate of power dissipation in this circuit?

Solution

 = out = I ℰ = 1.78×10-3 W

E.3 - Faraday’s Law Examples
Usually  when  we  use  Faraday's  law  we  will  only  consider  the  magnitude  of  the  induced  EMF  or  current.   We  will  see  how  to  find  the

polarity in the Lenz's law discussion that follows.  We can neglect polarity information by inserting absolute values into Faraday's law.

ℰave = N
ΔΦ

Δt
and ℰ = ℰave (small Δt)

If one is given some problem involving induced currents then this is related to the induced EMF by Ohm's law

ℰ = I R

The Translating Rod

There  is  an  equivalence  between  motional  EMF  and  Faraday's  law.   For  the  case  of  the  translating  rod  that  we  analyzed  above  using
motional  EMF,  we  ought  to  be  able  to  derive  the  same  results  using  Faraday's  law  directly.   If  a  load  resistor  is  placed  in  the  circuit  then  the
complete circuit consists of the rod, rails and load.  As the rod moves the area inside the circuit loop is increasing and so is the flux.  In the time

Δt the rod moves by v Δt and the area increases by

ΔA = ℓ v Δt

The  flux,  since  the  field  is  uniform  and  perpendicular  to  the  surface,  is  Φ = B A  and  since  the  field  is  constant  we  get  
ΔΦ

Δt
= B

ΔA

Δt
.  The  induced

EMF becomes
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ℰ =
ΔΦ

Δt
= B

ΔA

Δt
= B ℓ v

which is the same as the expression derived using motional EMF considerations.

The AC Generator

B

ω

ω

Consider  a  solenoid  or  coil  with  its  central  axis  rotating  with  angular  velocity  ω  in  a  uniform  magnetic  field  of  magnitude  B.   Take  the
central axis to be perpendicular to the rotational axis and  the rotational axis to be perpendicular to the field.  The coil has N turns and each loop

has a cross-sectional area A. Take the angle between the axis of the coil and the field to be θ.  This varies by

θ = ω t

The flux through a loop is

Φ = B A cos θ = B A cosω t.

By Faraday's law  ℰ = -N
ΔΦ

Δt
 (for small Δt) we get the induced EMF as a function of time to be

ℰ(t) = N B Aω sinω t.

This is an AC voltage.  We will discuss AC in detail in the AC circuit chapter.  We will state for future reference that the peak EMF is

ℰmax = N B Aω where ω = 2 π f

and  the  frequency  of  AC  is  the  same  as  the  rotational  frequency.  We  will  see  in  the  next  chapter  that  the  angular  frequency  ω  is  related  to  the
frequency f by ω = 2 π f .

The AC Motor

With a generator one does work to turn the coil and that energy is converted to electrical energy. A generator run in reverse is a motor  and

electrical energy is converted to work.

Example E.2 - Faraday’s Law

A  flat  circular  coil  has  20  turns,  a  radius  of  12 cm  and  sits  in  a  vertical  magnetic  field  of  magnitude  30 mT.  The  coil  is  initially  in  a
horizontal plane and is rotated to a vertical plane in 2.3 s.

(a) What is the average induced EMF in the coil during the rotation.

(b)  If  the  two  ends  of  the  coil  are  shorted  (connected)  and  the  coil  has  a  total  resistance  of  85 mΩ,  then  what  is  the  average  induced
current during the rotation.

(c)  Suppose  instead  the  coil  stays  in  the  horizontal  plane  but  the  magnetic  field  decreases  from   85 mT  to  25 mT  in  1.8 s.  What  is  the
induced EMF in the coil and, if the ends of the coil are shorted as in part (b), what is the induced current in the coil?

E.4 - Lenz’s Law
The minus sign in Faraday's law is known as Lenz's law.  It gives the polarity of the induced EMF.  If the circuit is completed with a  load

resistance  the  induced  EMF  causes  an  induced  current.   The  induced  current  induces  a  magnetic  field  Bind  which  in  turn  induces  a  flux  Φind

through the loop.
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The induced flux tends to cancel the change in  the flux.

This cancellation is exact for a superconductor.
The magnetic flux  through a superconducting loop is a constant.

Using Lenz's Law

A simple procedure for applying Lenz's law follows. Identify a sign convention and then make a table consisting of the appropriate signs for

Φ,
ΔΦ

Δt
, Φind  and  give  the  sense  of  circulation  for ℰ.  Flux  is  a  scalar  but  it  has  a  sign;  we  can  associate  the  signs  of  our  flux  variables  with  the

directions of the normals to the loop. The first step is to identify the circuit loop and choose a positive direction relative to the normal to the loop.
Make a table with the first three columns having signs and the fourth having a sense of rotation.

◼ The sign of Φ is the direction of the field through the loop. If the field is in the same direction as the normal it is positive and negative 
otherwise.

◼ The sign of ΔΦ /Δt is the same as Φ when the flux is increasing, and opposite to Φ when the flux is decreasing.

◼ By Lenz's law, the sign of Φind is always opposite to that of 
ΔΦ

Δt
.

◼ To get the direction of the induced emf and current, ℰ and I, use the right-hand rule to determine which sense current gives the induced flux.

Example E.3 - Polarity of Motional EMF

When we used Faraday’s law to find the EMF of the translating rod, we only found its magnitude. In the motional EMF analysis of the
same problem we saw we induced a counterclockwise voltage and current. Use Lenz’s law to get this same result.

Solution

Follow the procedure outlined above. Here we will choose the positive direction to be out of the page and this corresponds to a
counterclockwise  sense  of  rotation.  Since  the  field  is  opposite  the  normal  we  have  the  flux  as  negative.  The  flux  is  increasing
(more  field  lines  pass  through  with  time)  so  the  sign  of  the  derivative  of  the  flux  is  the  same  as  the  flux,  negative.  (it  is
becoming increasingly negative.) The induced flux is always opposite the change in the flux, so it is positive. That corresponds
to a counterclockwise current and EMF.

Positive Sign of Sign of Sign of Sense of

normal Φ Φ / t Φind ℰ or I

- - +

Example E.4 - Magnets Falling through Conducting Loops

(a) A magnet with its north pole at the bottom is dropped through a horizontal conducting loop. What is the sense of the induced current
as the magnet enters and then leaves? Answer clockwise or counterclockwise as viewed from above.
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Solution
The field of the magnet points away from the north pole and toward the south pole. Choose the positive normal to be upwards. 

As  the  magnet  enters  the  field  is  downward  (away  from  the  north  pole)  so  the  flux  will  have  a  negative  sign.  The  flux  is
increasing  as  the  magnet  enters,  since  more  lines  pass  through  with  time;  this  means  that  the  sign  of  Φ / t  is  the  same  and
negative.  (The  flux  is  becoming  increasingly  negative.)  The  induced  flux,  by  Lenz's  law,  is  always  opposite  Φ / t,  so  it  is
positive and this corresponds to a counterclockwise induced current. 

As the magnet leaves the field is downward (toward the south pole) as well, pointing toward the south pole. Here the number of
field lines is decreasing so Φ / t is opposite Φ and positive. This gives a negative induced flux and a clockwise induced current.

Positive Sign of Sign of Sign of Sense of

normal Φ ΔΦ /Δ t Φind ℰ or I

Enters - - + counterclockwise

Leaves - + - clockwise

(b)  A  magnet  with  its  north  pole  at  the  bottom  is  dropped  through  a  long  vertical  aluminum  (conducting  but  not  magnetic)  pipe.  The
falling  magnets  induce  circular  eddy  currents  in  the  pipe  and  energy  is  lost  to  the  Joule-heating  of  the  currents,  slowing  the  magnet’s
descent through the aluminum tube. Identify the induced magnetic moments from the loops above and below the falling magnetic when
inside the tube.

Solution

N

S
v

N

S
μ

Loops

Above
I

N

S
μ

Loops

Below
I

From  the  analysis  in  part  (a)  we  can  identify  the  induced  currents  and  then  the  induced  magnetic  moments  due  to  the  falling
magnet.  Loops  below  the  magnet  correspond  to  the  case  where  the  magnet  enters  the  loop  in  part  (a).  The  induced  current  is
counterclockwise  and  the  corresponding  magnetic  moment  is,  by  the  right-hand  rule,  upwards;  since  an  upward  magnetic
moment is equivalent to a magnet with the north pole on the top, we can see that induced magnetic moments of the loops below
push  upward  on  the  falling  magnet.  For  the  loops  above,  this  now  corresponds  to  the  case  where  the  magnet  leaves  the  loop.
Now the induced current is clockwise giving a downward magnetic moment which is equivalent to a bar magnet with the north
pole on the bottom; this induced magnetic moment will then pull upwards on the falling magnet below. It is now clear that all
the induced currents slow the falling magnet. This must be the case; energy is being lost to Joule heating.
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(c) Suppose instead that an isolated north pole were discovered. How would the results in part (a) change is an isolated north pole passed
through.

N v

N v

Conducting

Loop

Enters

Leaves

Solution
The case of the pole entering the loop is the same as when the bar magnet enters. As the pole leaves the field is now upwards
and decreasing; this gives a positive induced flux and a counterclockwise induced current.

Positive Sign of Sign of Sign of Sense of

normal Φ ΔΦ /Δ t Φind ℰ or I

Enters - - + counterclockwise

Leaves + - + counterclockwise

This  shows  an  experiment  to  look  for  isolated  magnetic  poles.  A  superconducting  loop  is  monitored  for  currents.  If  a
spontaneous  current  is  set  up  in  the  loop  then  that  is  evidence  that  an  isolate  poles  passed  through  the  loop.  When  a  dipole
passes through the induced currents cancel giving no net effect.

Example E.5 - Induced Current around an Inner Loop Due to a Changing Current in an Outer Loop

While the switch is closed there is a steady counterclockwise current in the outer loop and this creates a magnetic field, by the right-hand
rule,  that  is  out  of  the  page.  This  steady  current  creates  a  steady  flux  through  the  inner  loop  and  thus,  doesn’t  induce  a  current  in  the
inner loop. But when the switch is closed, at that instant, there is an abrupt increase in the current and when the switch is opened there is
an abrupt drop in the current at that instant.

What is the direction of the induced current through the resistor when the switch is closed and then when the switch is opened?

Solution
The clockwise current in the outer loop creates an outward field in the inner loop, so choosing the positive normal to be outward
then the flux is positive in both cases. When the switch is closed, the current increases so the flux increases and when the switch
is opened the current decreases and the flux decreases.

Positive Sign of Sign of Sign of Sense of

normal Φ ΔΦ /Δ t Φind ℰ or I

Closed + + - clockwise ⟹ Current to the right through R

Opened + - + counterclockwise ⟹ Current to the left through R
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E.5 - Inductance

(Self) Inductance

As a consequence of Faraday's law a changing current through one coil induces an EMF in another coil; this is known as mutual inductance.

Similarly, a changing flux in a coil induces an EMF in the same coil; this is self inductance and a circuit component with inductance is called an
inductor.

A  changing  current  through  a  coil  can  induce  an  EMF  (voltage)  across  the  coil.  This  is  called  self  inductance.   When  we  use  the  term

inductance by itself self inductance is implied.  A current through a coil creates a field and that causes a flux through the coil itself.

I ⟹ B ⟹ Φ

A changing current creates a changing flux with induces an EMF  in the coil.

ΔI

Δt
⟹

ΔΦ

Δt
⟹ ℰ

The above relationships are proportionalities.  The constant of proportionality is defined as the inductance L.

ℰ = -L
ΔI

Δt
(small Δt)

The sign in the above expression is due to Lenz's law.  Take ΔV  to be the change in the voltage when moving through the inductor in the
direction of the current.  A simple Lenz's law analysis shows that if the current is increasing the voltage change is negative.  If we write V as the
voltage drop we get

ΔV = -L
ΔI

Δt
and V = L

ΔI

Δt
.

The sign conventions for inductors is the same as that for resistors and capacitors, V is the voltage drop when moving with the current.

ΔV = -I R and V = I R

ΔV = -
Q

C
and V =

Q

C
where I =

ΔQ

Δt
(for small Δt)

Units:  The SI unit for Inductance is:  henry = H

Inductance of a Long Solenoid

Consider  a  long  solenoid  of  length  ℓ,  with  N  turns  and  a  cross-sectional  area  A.   As  before  we  define  n  as  the  number  of  turns  per  length
n = N / ℓ.  Passing from the current to the field to the flux gives

I ⟹ B = μ0 n I ⟹ Φ = B A = μ0 n I A

and using Faraday's law we get

ℰ = -N
ΔΦ

Δt
= -N μ0 n A

ΔI

Δt
(for small Δt).

Using ℰ = -L ΔI /Δt (for small Δt), we can read the inductance from this expression

L = μ0
N2

ℓ
A,

where we used n = N / ℓ.  

Example E.6 - A Long Solenoid as an Inductor

Consider  a  solenoid  with  a  circular  cross-section  with  a  radius  of  3 cm,  a  length  of  75 cm  and  200  turns.  You  may  consider  the  length
long compared to the radius.

(a) If the current through the solenoid varies from 25 A to 11 A in 3.5 ms, then what is the magnitude of the average voltage across the
solenoid?
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Solution
We have the given values.

ℓ = 0.75 m, N = 200, μ0 = 4 π×10
-7
N

A2
and r = 0.030 m ⟹ A = π r2 = 0.0028274 m2

We can now solve for the inductance.

L = μ0
N2

ℓ
A = 1.8950×10-4 H

The average EMF is 

ℰ = -L
ΔI

Δt
(small Δt) ⟹ ℰave = -L

ΔI

Δt

We also have

ΔI = 11 A - 25 A = -14 A and Δ t = 3.5 ms = 3.5×10-3 s

Taking absolute values for the magnitude we get our answer.

ℰave = L
ΔI

Δt
= 0.758 V

E.6 - Energy Considerations

Energy in an Inductor

Inductors, like capacitors, store energy, while resistors dissipate energy.  Use U to denote the energy in an inductor.  The rate that energy is
being stored in an inductor is (for small Δt)

ΔU

Δt
=  = I V = I L

ΔI

Δt
⟹ ΔU = I L Δ I

Increase  the  current  from  0  to  I;  call  the  intermediate  current  i  and  then  we  have  0 ≤ i ≤ I  and  ΔU = L i Δ i .  Summing  over  these  small  ΔU
values as i varies from 0 to I gives the total energy.

U = L  i Δ i

I

i
I

I

Area= ∑ i Δi=
1

2
I2

i Δi
i

i i+Δi

The diagram above shows that ∑ i Δi =
1

2
I2. We then get the expression for the energy in an inductor.

U =
1

2
L I2
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Example E.7 - A Long Solenoid as an Inductor (Continued)

Using the same solenoid as in the previous problem, with a circular cross-section with a radius of 3 cm, a length of 75 cm and 200 turns.
You may consider the length long compared to the radius.

(b) If at some instant, the current through the solenoid is 18 A, then what is the total energy stored in the solenoid?

Solution

Use the same inductance L = 1.8950×10-4 H from the previous example and I = 18 A we get.

U =
1

2
L I2 = 0.0307 J

Energy in a Magnetic Field

In the capacitance chapter we derived an expression for the energy density (Energy/Volume) in an electric field.

u =
1

2
ε0 E

2

To  derive  this  we  used  the  fact  that  the  electric  field  is  uniform  inside  a  parallel  plate  capacitor.   Combining  expressions  for  the  energy  in  a
capacitor and for the capacitance gave the above expression for u.  A similar analysis will give the energy density in a magnetic field.

The magnetic field is uniform inside a long solenoid.  Combining the expression for the inductance of a long solenoid with the energy in an
inductor gives

U =
1

2
L I2 and L = μ0 n

2 A ℓ ⟹ U =
1

2
μ0 n

2 A ℓ I2

Using B = μ0 n I and u = U /Volume = U / (A ℓ) gives the energy density in a magnetic field.

u =
1

2 μ0
B2

Example E.8 - Energy Density

What is the energy density in the earth’s magnetic field in Bryan Texas, where the magnitude of the field is 47.3 μT.

E.7 - RL Circuits

L R

ℰ

A

B

Decaying Current

Begin with switch A closed and B opened.  This creates a current through the inductor and resistor. Close switch B and then open A.  This
causes the current to flow through the top branch of the above circuit.  Applying the loop rule around the circuit gives

0 = L
ΔI

Δt
+ R I.

Rewrite this as
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ΔI

Δt
= -

1

τ
I,

where the time constant τ is defined by

τ =
L

R
.

Take the initial current to be I0. Solving the equation for t is a calculus problem. We will just write down the solution.

I(t) = I0 e
-t/τ,

This is a simple exponential decay, analogous to the decay of the charge for a discharging capacitor.

The initial energy in the inductor U =
1

2
L I0

2
 is converted to heat in the resistor.

t

I

I0

-1I0

τ

Interactive Figure - Current Decay in an RL Circuit

Growing Current

With both switches opened giving zero current, close switch A at t = 0.  This causes the current to gradually build up to a steady-state value.
Apply the loop rule to the circuit gives the first order ODE.

ℰ = L
ΔI

Δt
+ R I.

Using the same time constant τ we can write down the solution where we take the initial current, at time zero, to be zero.

I(t) = I∞ 1 - e-t/τ where I∞ =
ℰ

R

is the steady-state current.

t

I

I∞=ℰ/R

(1--1)I∞

τ

Interactive Figure - Current Growth in an RL Circuit
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Example E.9 - A Long Solenoid as an Inductor (Continued... More)

Using  the  same  solenoid  as  in  the  previous  problems,  with  a  circular  cross-section  with  a  radius  of  3 cm,  a  length  of  75 cm  and  200
turns. You may consider the length long compared to the radius. Now suppose the solenoid has a total resistance of 35 mΩ.

(b) If the solenoid is connected across a 12-V battery, then what is the current after a long time:

Solution
Use the same inductance for this solenoid as before. That and the new values are:

L = 1.8950×10-4 H, ℰ = 12 V and R = 0.85Ω

After a long time the current approaches I∞.

I∞ = ℰ /R = 14.1 A

(c) What is the current 0.3 ms after the circuit in part (b) is connected?

Solution
The time constant is

τ = L /R = 0.00022294 s = 0.22294 ms

Using our time of t = 0.3 ms and using the formula for current growth we get the current at time t.

I(t) = I∞ 1 - e-t/τ = 10.4 A

(d)  Suppose  after  a  long  time  when  the  current  has  reached  the  value  in  part  (b),  the  terminals  of  the  solenoid  are  connected  (shorted)
removing the battery from the circuit. What is the current 0.6 ms after this?

Solution
The  time  constant  is  the  same  as  in  part  (c).  Now  we  have  a  current  decay  with  t = 0.6 ms  and  I0 = I∞  from  part  (b).  Use  the
current decay formula to get the current.

I(t) = I0 e
-t/τ = 3.68 A

E.8 - The Transformer
In  addition  to  self  inductance  where  a  changing  current  through  a  coil  induces  an  EMF  across  its  terminals,  there  is  mutual  inductance

where  a  changing  current  in  one  coil  induces  an  EMF  in  another  coil.  We  will  consider  only  one  special  case  of  mutual  inductance,  the
transformer.

Soft
Ferromagnetic

Core

Primary
Coil

N1 turns

Secondary
Coil

N2 turns

A transformer is a case of mutual inductance where, ideally, all of the flux from one coil passes through the other.  Take the primary coil to
have  N1  turns  and  the  secondary  to  have  N2.   This  can  be  achieved  to  a  good  approximation  by  wrapping  both  coils  around  the  same  soft
ferromagnetic core.   The core amplifies the field due to the current and directs the field lines around the loop of the core

The fluxes are assumed to be equal.

Φ = Φ1 = Φ2

Then by Faraday's law
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V1 = -N1
ΔΦ

Δt
and V2 = -N2

ΔΦ

Δt

we get a proportionality between the voltage and number of turns.

V2

V1
=
N2

N1

Take the voltages to be the rms voltages then we see that the effect of the transformer is to vary the voltage.  A step-up transformer increases the
voltage V2 > V1 and a step-down transformer decreases the voltage V2 < V1.  If we consider the power in the circuit then the instantaneous power

is   = V I, so it follows that there is an inverse proportionality between the voltage and current.  

V2

V1
=
N2

N1
=
I1

I2

Transformers  are  very  common.   Many  transformers  have  standard  household  voltage  as  its  input  and  DC  output  at  a  different  voltage.

After the transformer a rectifier circuit is used to convert the AC output of the transformer to DC.  
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