
Chapter G

Electromagnetic Waves
Blinn College - Physics 1402 - Terry Honan

G.1 - The Nature of Electromagnetic Radiation

The Discoveries

With Faraday’s Law, we saw that a changing magnetic field can produce an EMF, an electromotive force. It turns out that this EMF can be
written in terms an induced electric field; that field pushes the charges around a circuit causing the EMF. James Clerk Maxwell then showed that
in addition to changing magnetic fields producing electric fields, changing electric fields can produce magnetic fields. This makes electromag-
netic  radiation  possible.  Sinusoidally  varying  electric  field  induce  sinusoidally  varying  magnetic  fields,  which  in  turn,  produce  sinusoidally
varying electric fields. This arrangement then propagates (in a vacuum) at the speed of light.

In 1864, Maxwell showed mathematically that the equations describing electromagnetism give rise to wave solutions and the speed of those
waves can be described in terms of our electromagnetic constants ε0 and μ0.

c =
1

μ0 ε0

.

Maxwell  then  realized  that  the  speed  of  these  waves  was  the  previously  measured  value  of  the  speed  of  light  in  a  vacuum.  In  addition  to
explaining light, Maxwell predicted the rest of the electromagnetic spectrum.

After  Maxwell  in  1887,  Heinrich  Hertz  was  able  to  show  how  to  produce  and  receive  these  electromagnetic  waves  in  a  laboratory.
Guglielmo  Marconi  was  able  to  find  a  practical  application  of  Maxwell’s  and  Hertz’s  discoveries,  using  them  for  communication.  In  1901
Marconi sent Morse code as a radio signal across the Atlantic. This became the basis of modern wireless communications.

The Propagating Fields

In an electromagnetic wave the electric and magnetic field are perpendicular and both are perpendicular to the direction of wave propaga-
tion.  If  we  choose  the  direction  of  the  electric  fields  to  be  in  the  y-direction  and  the  magnetic  fields  to  be  in  the  z-direction  then  the  wave
propagates at the speed of light in the x-direction.

There is a right-hand rule to get the direction of wave propagation: Put your thumb in the direction of E  and your fingers in the direction of B
then your palm is in the direction of wave propagation. Note that if you look at any x position the electric field varies as a sinusoidal function,
like what we studied in the previous chapter.

Example G.1 - Directions of Fields

An electromagnetic wave propagates in the z-direction. If the electric field is in the y-direction, then what is the direction of the magnetic
field?

Solution
Using the right-hand rule, put your thumb in the direction of the electric field, the y-direction and rotate your hand so that the
palm points to the z-direction. Your fingers are then in the negative-x direction; that is then the direction of the magnetic field.
(Note that your coordinate system must be right-handed; if your thumb is in the x-direction and fingers in the y-direction then
your palm is in the z-direction.)



Using the right-hand rule, put your thumb in the direction of the electric field, the y-direction and rotate your hand so that the
palm points to the z-direction. Your fingers are then in the negative-x direction; that is then the direction of the magnetic field.
(Note that your coordinate system must be right-handed; if your thumb is in the x-direction and fingers in the y-direction then
your palm is in the z-direction.)

Producing and Receiving Electromagnetic Waves

Accelerating electric charges are the ultimate source of electromagnetic waves. To produce waves consider an AC voltage source connected
across two separated conductors,  shown as gray bars in the diagram below. As the polarity of the source varies the charges on the conductors
varies and this creates a sinusoidally varying electric field. These fields then propagate as a wave.
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This, essentially, is a broadcasting antenna.

A receiving antenna is basically the same thing in reverse. An incoming electromagnetic wave creates a very small sinusoidal voltage across
an antenna and that small voltage can be amplified into a signal. Radio waves hit an antenna at all frequencies. A simple resonance circuit selects
for the correct frequency. The LC Resonance frequency is f = 1 2 π LC . Although modern radio tuners use complexe solid state circuitry,
the knob to adjust frequency on an old radio tuner is simply a variable capacitor that tunes for the correct f in an LC circuit.

G.2 - The Speed of Light and the Electromagnetic Spectrum

The Speed of Light

The speed of light in a vacuum is to three digits 

c = 3.00×108 m /s.
Because of its most fundamental nature we can choose our units so that c have the exact value

c = 2.99792458×108 m /s.
The definition of a second is given in terms of our most accurate method of measuring time, with atomic clocks, and the above definition of c
then gives a definition of the meter.

The first documented attempt to measure the speed of light was due to Galileo. He and an assistant both had lanterns they could cover and
they were separated by a large distance. When the distant assistant saw Galileo cover his lantern, he covered his. Galileo then looked for a time
delay. Of course, light is much too fast for that, but that is only obvious to us because we know light is very fast. A similar set-up could measure
the speed of sound. By viewing light as something physical that traveled at a finite speed, Galileo showed great insight. 

Historically, the first reasonable estimate of the speed of light was made by Roemer.  By plotting the period of Io, one of Jupiter's moons,
Roemer was able to explain the lack of periodicity in Io's orbit in terms of the time difference for light from Io to reach the Earth as the relative
distance between Jupiter and Earth varies as both are in different positon relative to the sun in their orbits.

An accurate measure of c was first found by Fizeau. By shining a light through a rapidly rotating toothed wheel and reflecting it off a distant
mirror, he could essentially redo Galileo’s experiment with very short time intervals and large distances.

The speed of light is a fundamental speed limit.  It is impossible to send any information faster than c.  
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Example G.2 - Time of Travel for Light

(a) The earth-sun distance is 

RES = 1.50×1011 m
How long does it take for a light signal to travel from the sun to the earth?

Solution
Since d = v t = c t we can simply solve for t.

t =
d

c
=

RES

c
= 500 s = 8.33 min

With the speed of light as the ultimate speed limit this means that we cannot know what is happening on the sun now, only what
happened over eight minutes ago.

(b) The earth-moon distance is 

REM = 3.84×108 m
How long does it take for a light signal to travel from the moon to the earth?

Solution

t =
d

c
=

REM

c
= 1.28 s

There was a very noticeable time delay when astronauts were on the moon. It took over two and a half seconds for a radio signal
to get from the earth to the moon and back.

(c) How far does light travel in a nano-second?

Solution

t = 10-9 s ⟹ d = c t = 0.3 m ≃ 1foot
We think of the speed of light as a significant communication obstacle when dealing with large distances, but with computers
time  scales  are  on  the  order  of  nano-seconds  so  the  speed  of  light  is  also  significant.  As  computers  get  faster,  they  must
necessarily get smaller.

(d) A light-year ly is the distance light travels in one year. What is this in meters?

Solution

1 ly = c×(1 yr) = 3.00×108
m

s
×365.24 days×

24 h

day
×

3600 s

h
= 9.47×1015 m

The Electromagnetic Spectrum

The Full Spectrum
Electromagnetic radiation can be described by its wavelength and frequency.  Since frequency and wavelength are related by

f λ = c

for  radiation  in  a  vacuum,  it  follows  that  all  electromagnetic  radiation  can  be  written  along  a  line  of  increasing  frequency  and  decreasing
wavelength.
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Long wavelength waves are radio waves.  Wavelengths shorter than around 0.3 meter are usually labeled microwaves. Smaller than about 1
mm start the infrared (IR) waves. At 700nm we get into the visible spectrum which is a narrow band of wavelengths down to 400 nm.  Below
400 nm to around 3 nm are the ultraviolet (UV) waves.  Wavelengths smaller than that are called X-rays and the small wavelength limit, beyond
around 0.003 nm, are called gamma rays.

The Visible Spectrum and Primary Colors
The visible spectrum consists of the narrow band of wavelengths between 400 and 700 nm.  In order of decreasing wavelength (increasing

frequency) we have ROYGBIV: Red, Orange, Yellow, Green, Blue, Indigo and Violet. There is approximately a factor of two of wavelengths
(and  frequencies)  we  can  see;  this  is  crucial  to  our  perception  of  light.  With  sound  we  can  hear  many  octaves,  where  going  up  an  octave  is
doubling a  frequency.  As you go through the “do-re-mi” scale  from the low “do” to  the  high “do”,  you jump up an octave,  doubling the  fre-
quency. With light we can see the equivalent of only one octave of light. Our brain matches the ends of the visible spectrum into a circle; violet
appears as a reddish blue.  If we perceived sound similarly, the low “do” and high “do” would sound the same. 

400 nm

450 nm

500 nm550 nm

600 nm

650 nm

700 nm

Notice that the visible spectrum is not quite a factor of two of wavelengths and frequencies. There is a missing color, magenta. Although we may
perceive magenta as a combinations of other colors, there is no pure color, meaning color of a single wavelength, corresponding to magenta.

Matching the ends of the visible spectrum together makes it possible to represent colors as combinations of three primary colors. There are
two notions of primary colors: additive mixing and subtractive mixing.  Additive mixing is used with computer monitors and television screens.
We begin with black and add colors.  The additive primary colors are Red, Green and Blue.  Combining all three we can get white as shown.
Subtractive mixing is where we begin with white and remove colors.  This is used when mixing paints or for color printers.  Here the primary
colors are Cyan (a blue-green color), Magenta (a reddish violet) and Yellow.  Removing all three subtractive colors gives black.

Green

Red Bl
ue

Magenta

Cyan

Ye
llo
w

Additive Mixing Subtractive Mixing

Example G.3 - Frequencies and Wavelengths

(a) Modern microwave ovens operate at a frequency of 2450 MHz. What is the wavelength of the radiation?
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Solution

c = 3.00×108
m

s
and f = 2450 MHz = 2450×106 Hz ⟹ λ=

c

f
= 0.122 m = 12.2 cm

There  is  a  mesh  on  the  door  of  all  microwaves  to  keep  the  microwaves  inside.  But  we  can  see  inside,  so  clearly  some
electromagnetic  radiation passes  through.  Why can light  pass  through and microwaves  not?  This  has  to  do with  wavelengths.
The wavelength of the microwaves is much larger than the spacing on the mesh, so the waves are reflected back as if the mesh
were a  uniform conducting sheet.  The spacing on the  mesh is  much larger  than the  wavelength of  visible  light  so  that  passes
through easily.

(b) Radio stations identify by their frequency, FM stations give their frequency in MHz, ranging from 87.5 to 108 MHz. AM stations are
in kHz, between 525 and 1705 kHz. What are the wavelengths of an FM station at 90.9 MHz and an AM station at 1620 kHz.

Solution

f = 90.9×106 Hz ⟹ λ=
c

f
= 3.30 m and f = 1705×103 Hz ⟹ λ=

c

f
= 176 m

(c) What is the frequency of an X-ray with a wavelength of 0.030 nm?

Solution

λ = 0.020×10-9 m ⟹ f =
c

λ
= 1.5×1019 Hz

The Doppler Effect

We have  all  observed  the  Doppler  effect;  when  a  train  is  blowing  its  horn  or  a  police  car  blows  its  siren  while  moving  toward  you,  the
frequency is increased and when moving away it is decreased. This is is called the Doppler effect and it occurs for all waves. When the relative
motion between you and some wave source is toward each other, either the source is moving toward you or you toward the source, the observed
frequency of the wave increases. When the the relative motion is away, the frequency decreases.

For electromagnetic waves, as long as the relative speed u is mush less that the speed of light c (which we write v << c) we get

f ′ = f 1 ±
u

c
or Δ f = f ′ - f = ± f

u

c
for u << c

where f is the original frequency, f ′is the shifted frequency and Δ f = f ′ - f  is the frequency shift. We will see a corrected formula for this in the
Relativity chapter that will apply as the relative speed is larger, approaching c.

When  a  wave  reflects  off  a  moving  target,  there  is  a  frequency  shift  Δ f  between  the  source  and  the  target  and  another  Δ f  shift  in  the
returning waves giving a double shift.

Δ ftot = 2 Δ f = ±2 f
u

c
(reflection from a moving target) for u << c

Example G.4 - Doppler Effect for a Jet

A jet moves at 325 m /s relative to a radio source broadcasting with a frequency of 475 MHz. What is the observed frequency shift to the
jet when it is moving toward the source? What if when moving away?

Solution

f = 475×106 Hz , u = 325
m

s
and c = 3.00×108

m

s
⟹ Δ f = f ′ - f = ± f

u

c
= ±515 Hz

When moving toward the source, the Δ f  is positive, an increase, and when moving away it is negative and thus a decrease.

Example G.5 - A Police Radar Gun

Police radar uses the Doppler shift on reflected radio waves to measure the speed of a car. If the frequency of the source, the radar gun,
is 10.5GHz then what is the frequency shift when reflected off a car moving at 90 mi /h”

Solution
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f = 10.5×109 Hz , u = 90
mi

h
×

1609 m

mi
×

h

3600 s
= 40.225

m

s
⟹ Δ ftot = 2 Δ f = ±2 f

u

c
= ±2820 Hz

When the car is moving toward the radar gun, Δ ftot is positive and when moving away it is negative.

G.3 - Energy and Momentum in Electromagnetic Radiation

Energy and Intensity

Energy Density
The energy density u in an electromagnetic field can be written as a sum over electric and magnetic contributions

u = uE + uB =
1

2
ε0 E2 +

1

2 μ0
B2

We can find the average energy density uave using the fact that the fields are sinusoidal and that the average of sin2 is 1
2

.

uave = uE,ave + uB,ave =
1

2
ε0

1

2
Emax

2 +
1

2 μ0

1

2
Bmax

2

Because  of  the  symmetry  between  electric  and  magnetic  fields  in  electromagnetism,  the  electric  and  magnetic  contributions  are  equal,
uE,ave = uB,ave.

It follows that

uave =
ε0

2
Emax

2 =
Bmax

2

2 μ0
= ε0 Erms

2 =
Brms

2

μ0

where we used the relationship between rms and peak quantities for any sinusoidal function: Erms = Emax  2  and Brms = Bmax  2

c =
1

μ0 ε0

=
Emax

Bmax
=

Erms

Brms
=

E

B

Intensity
For light, intensity is a measure of its brightness. We will define intensity for all electromagnetic radiation. Intensity I is a measure of the

power (energy/time) per area.  If A is the area of a surface normal to the radiation, Δt is a time, U is the energy passing through the surface and 𝒫
is the power (U /Δt) through the surface, then these are related by 

I =
𝒫

A
=

U

A Δt
.

Consider all the radiation in the right cylinder (with any shape cross-section, even rectangular) and length cΔt.  Since all the radiation, and thus
all the energy, is flowing at speed c, it follows that all the energy in the cylinder passes A in Δt.  The volume of the cylinder is AcΔt, so

U = uave A c Δt and I =
𝒫

A
=

U

A Δt
= uave c

This gives several equivalent expressions for the intensity
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I = uave c =
ε0 c

2
Emax

2 = ε0 c Erms
2

Example G.6 - The Intensity of Sunlight

The intensity of sunlight drops off with distance. At the earth’s distance from the sun of RES = 1.50×1011 m the intensity of sunlight is
1370 Wm2.

(a) What are the rms electric and magnetic fields (Erms and Brms) in this radiation?

Solution
The intensity is given. The constants we need are ε0 and c.

ε0 = 8.85×10-12
C

N ·m2
, c = 3.00×108 m /s and I = 1370

W

m2

Using the formula for the intensity in terms of the rms electric field we can solve for Erms.

I = ε0 c Erms
2 ⟹ Erms =

I

ε0 c
= 718

V

m

To find the rms magnetic field we know that the electric and magnetic fields are proportional.

Erms

Brms
= c ⟹ Brms =

Erms

c
= 2.39×10-6 T

(b) What is the total power (energy/time) radiated by the sun?

Solution
Intensity is power per area, I = 𝒫/A. To find the correct area you must visualize how the energy is distributed. For the sun, the
light that leaves at some instant is, at a later time, spread over the surface of a sphere. The relevant area here is the surface area
of a sphere, A = 4 π r2. 

r = RES = 1.50×1011 m
We can now solve for the total power.

I =
𝒫

A
=

𝒫

4 π r2
=

𝒫

4 π RES
2

⟹ 𝒫= 4 π RES
2 I = 3.87×1026 W

Example G.7 - Laser Light

A 35-mW laser has a beam with a diameter of 2.5 mm. What is the intensity of the laser light and what is the rms electric field in the
beam? (The power rating of the laser is the total power (energy/time) of light produced,  𝒫 = 35 mW.

Solution
The diameter will give us the area and the that with the power will give the intensity. We can then find Erms.

A = π r2 = π
0.0025 m

2

2

= 4.9087×10-6 m2

𝒫 = 35 mW and I =
𝒫

A
= 7130

W

m2

Why are  we using π r2  here  and 4 π r2  in  the  previous problem? To get  the  correct  area  you must  consider  how the energy is
distributed. The energy that leaves the laser at one instant is spread over the circular cross-section of the beam at a later instant,
so here the area of a circle is correct.

From the intensity we can then find Erms as we did in the previous problem.

I = ε0 c Erms
2 ⟹ Erms =

I

ε0 c
= 1640

V

m
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Momentum and Pressure

Momentum Carried by Radiation
Electromagnetic  radiation carries  energy.   Since there is  moving energy there is  also momentum.  To see this  consider  Einstein's  famous

formula E = m c2.  This was shown to be generally true in 1905, but in the case of electromagnetism an analogous expression had been derived
previously.  We are using U  for energy, so let us write this as U = m c2.  Since momentum is p = m v  and the radiation is moving at c  we can
write p = m c.  Combining these expressions we get 

p =
U

c
.

This is the momentum carried by electromagnetic radiation.

Some  comments  should  be  made  on  the  mass  referred  to  above.   The  mass  in  E = m c2  is  known as  the  relativistic  mass.   This  is  to  be
distinguished from the rest mass.  The tabulated values of the masses of particles are their rest masses.  In relativity, a particle with a rest mass
can never be accelerated to the speed of light, but it can reach a speed arbitrarily close to that of light.  A particle of light is known as a photon;
this is called a massless particle meaning that it has no rest mass.  Massless particles must always move at c.

Momentum from Radiation Normally Incident on a Surface
If the radiation is normally incident on a surface we can derive simple expressions for the momentum given to the surface.  First consider

the case of a surface that is a perfect absorber.  All of the momentum of the radiation is given to the surface, giving

p =
U

c
(perfect absorber).

If  the surface is  a  perfect  reflector  then the change in  the momentum of  the radiation is  twice the value of  the incident  radiation.   Recall  that
momentum is a vector and here we are subtracting two vectors in the opposite direction.  Since momentum must be conserved, the change in the
momentum of the radiation is equal (in magnitude) to the momentum given to the surface.

p = 2
U

c
(perfect reflector)

Pressure and Force on a Surface from Normally Incident Radiation

Newton's second law Fnet =
Δ
Δ t

p  relates force to momentum.  The force can be related to the momentum in the case of normally incident
radiation by the expression

F =
p

Δt
.

Pressure is defined as force per area.  

Pressure =
F

A
.

We can then write the pressure Pressure in terms of the momentum p.

Pressure =
p

A Δt
Using the definition of intensity

I =
𝒫

A
=

U

A Δt
.

We can turn the momentum expressions, which involve the energy U into expressions for the pressure involving the intensity I by dividing both
sides of the momentum expressions by AΔt.

Pressure =
I

c
(perfect absorber)

Pressure = 2
I

c
(perfect reflector)

In the cases of both pressure on a surface and momentum given to a surface, the effect is very small. to get both pressure and momentum we
divide by the speed of light and this will typically give a small value. Both effects are difficult to notice and it is hard to find a practical applica-
tion for them.
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In the cases of both pressure on a surface and momentum given to a surface, the effect is very small. to get both pressure and momentum we
divide by the speed of light and this will typically give a small value. Both effects are difficult to notice and it is hard to find a practical applica-
tion for them.

Example G.8 - Pushing with a Laser

In  space,  a  laser  is  used  to  push  a  small  rocket.  If  a  200-mW  laser  targets  this  rocket  and  hits  it  perpendicularly  to  the  a  perfectly
reflecting surface, then after one year, how much momentum has the small rocket acquired?

Solution
Power is energy/time so from the power of the laser we can find the total energy in one year.

𝒫 = 200 mW ⟹ U = 𝒫 t = 𝒫×1 yr = 𝒫×365.24 days×
24 h

day
×

3600 s

h
= 262 970 J

Although this seems like a lot of energy, to get the momentum we divide by the speed of light and get a tiny, tiny momentum.
Here we have a perfect reflector.

p = 2
U

c
= 0.00175 kg ·m /s

Example G.9 - Radiation Force on the Earth

The radius of the earth is 6.37×106 m and the intensity of sunlight at the earth is 1370 Wm2.  Assuming the earth is a perfect absorber,
then what is the force of the sun’s radiation on the earth?

Solution
Here the intensity will allow us to calculate the pressure. The pressure multiplied by the area will give us the force. First let us
find the pressure. For a perfect absorber we have

Pressure =
I

c
= 4.5667×10-6 Pa

Compare this number with atmospheric pressure which is around 105 Pa = 105 pascals.

To find the force we need the area. Although the sunlight is hitting half the spherical surface of the earth, we do not want half
the area of a sphere here. Our formulas are for normally incident radiation and the area of the earth perpendicular to the sunlight
is π RE

2 . What matters here is how much sunlight the earth absorbs and π RE
2  is the area of the shadow behind the earth.

RE = 6.37×106 m ⟹ F = Pressure×A = Pressure×π RE
2 = 5.82×108 N

Although this may seem like a large number, remember that it is acting on a planet. Comparing this with the gravitational force
of the sun on the earth, it would then be totally negligible.

G.4 - Polarization
Recall  from  section  25.1  that  the  electric  field  and  magnetic  field  were  perpendicular  and  both  were  perpendicular  to  the  direction  of

propagation. There we took x to be the direction of propagation and the electric field was in the y-direction and the magnetic field was in the z-
direction.  However,  there is  a  plane of  possible direction perpendicular  to the direction of  propagation,  which we will  keep as x.  Rotating the
fields in this plane gives different polarizations. We choose the direction of polarization to be the direction of the electric field.

Polarized Light through a Filter
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A polarizing filter allows only the component of the electric field along the axis of the filter. The wave that exits the filter is then polarized
along the axis of the filter with a smaller amplitude. The amplitude is the peak electric field. 

A = Emax

If A0 is the amplitude before the filter and A is the amplitude after the filter then 

A = A0 cosθ

The intensity is proportional to the square of the amplitude I ∝ A2, since I = 1
2
ε0 c Emax

2 . Using this we can write the intensity of light after the
filter to the intensity before.

A = A0 cos θ and I ∝ A2 ⟹ I = I0 cos2 θ

Summarizing, when polarized light with intensity I0 passes through a polarizing filter then it leaves with an intensity of I given by.

I = I0 cos2 θ

where θ is the angle between the angle of polarization of the light and the polarizing axis of the filter. This relation is known as Malus's law.

Polarized light of intensity I0 passing through a polarizing filter. It leaves polarized along the axis of the filter with the intensity I = I0 cos2 θ.

Unpolarized Light through a Filter
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Unpolarized light passing through a polarizing filter. It leaves polarized along the axis of the filter with half the intensity.

Viewing  normal  ambient  light  through  a  polarizing  filter  usually  shows  no  effect  when  the  filter  is  rotated.   This  is  because  the  light  is
unpolarized; this means that it is a random mixture of all polarizations.  Given this random mixture, we average over all polarizations. Since the
average value of cos2 is 1/2 we get.

I =
1

2
I0

relating the intensities before and after the filter. The light then leaves the filter polarized along the axis of the filter.

Polarization by Reflection and Scattering

Reflected light tends to be polarized.  When light reflects of a surface at some angle (not normally incident) there is one possible polariza-
tion direction that is parallel to the surface and the reflected light tends to be polarized in this parallel direction. For instance, light reflecting off
a  horizontal  surface  tends  to  be  horizontally  polarized.   Polarizing  sunglasses  have  filters  with  vertical  axes  to  remove  this  reflected  light  or
glare. By saying “tends to be polarized” I mean that the light has more of that polarization than the other.

We  see  the  sky  because  light  is  scattered.  You  can  view  this  as  light  bouncing  off  air  molecules.  Light  from  the  sun  scatters  off  an  air
molecule toward you. The light rays from the sun to the air molecules and from the air molecules to you for a plane and the light tends to be
polarized perpendicular to that plane. When you look at the air with the sun behind you, then the light from the sun to the molecules define a
vertical plane, and the scattered light then tends to be horizontally polarized. While discussing scattering by air, it should be mentioned that blue
light scatters more than the other colors and that is why the sky is blue.

Example G.10 - Light through Two Polarizing Filters

Light with an intensity of 2000 Wm2 passes through two polarizing filters, the first has an axis at an angle of 30 ° from vertical and the
second has a horizontal (90 ° from vertical) axis.

(a) If the initial light is vertically polarized, then what is the intensity of the light between the filters and after the filters.

Solution

Take I0 = 2000 Wm2 to be the intensity of the light before the filters. 

I = I0 cos2 θ

Label  the intensity  between to  be I1  and after  to  be I2.  The angle  between the polarization of  the incoming light  and the first
filter is  θ1 = 30 °, so we get
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I1 = I0 cos2 θ1 = 1500 Wm2

The light between the filters is polarized at θ1.  Take the polarizing angle of the second filter to be θ2 = 90 °. It follows that the
angle between the polarization angle of the light hitting the second filter and the axis of the second filter is θ2 - θ1 = 60 °.  We
can then find the intensity after the second filter.

I2 = I1 cos2(θ2 - θ1) = 375 Wm2

(b) If the initial light is unpolarized, then what is the intensity of the light between the filters and after the filters.

Solution

Now we have the same I0 before the filters but when unpolarized light passes through a filter it leave with half the intensity and
polarized along the axis of the filter. 

I =
1

2
I0

So now between the filters we have

I1 =
1

2
I0 = 1000 Wm2

The light between the filters is polarized at θ1.  Take the polarizing angle of the second filter to be θ2 = 90 °. It follows that the
angle between the polarization angle of the light hitting the second filter and the axis of the second filter is θ2 - θ1 = 60 °.  We
can then find the intensity after the second filter.

I2 = I1 cos2(θ2 - θ1) = 250 Wm2
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