
Chapter H

Geometric Optics
Blinn College - Physics 1402 - Terry Honan

H.1 - Wave Fronts, Rays and Reflection

Wave Fronts and Rays

There are two ways we can visualize waves, as wave fronts or as rays.  If we mark the crest of each wave then these form the wave fronts.
For a plane wave the crest corresponds to parallel planes moving at the wave speed perpendicular to the plane. Light from a point source is a
spherical  wave.  A  spherical  wave  from  a  distant  source  approaches  a  plane  wave.  In  both  cases,  the  distance  between  wave  fronts  is  one
wavelength  and  the  rays  are  perpendicular  to  the  wave  fronts.  A  light  ray  is  what  you  expect  it  to  be,  it  points  in  the  direction  of  the  light
propagation.

λ

Plane Wave

λ

Spherical Wave

Interactive Figure - Plane Waves and Spherical Waves. Wave fronts are red and rays are blue.

Reflection of Light



When we describe the angle that light makes with a surface, we measure the angle of the ray from the normal to the surface. When light
reflects off a smooth shiny surface, it reflects so that the incident angle equals the reflected angle. This is known as the law of reflection. Most of
the light we see is reflected light. Reflection off shiny smooth surfaces is called specular reflection. Most surfaces are rough on the order of the
wavelengths  of  light.  Because  the  normal  to  a  rough  surface  is  varying,  the  light  then  reflects  in  random  directions.  This  is  called  diffuse
reflection. Most of the light that we see is from the diffuse reflection off surfaces.

H.2 - Refraction

Light in a Medium

When we refer to c as the speed of light, it is implied that it is the speed in a vacuum. In a medium light slows down. It slows down by a
factor called the index of refraction; this is a material dependent constant n defined by

v =
c

n
,

where v is the speed in the medium.  Clearly n ≥ 1 and the equality applies to a vacuum.

When light hits an interface between indices n1 and n2 both the frequency and wavelength cannot remain unchanged, since

f λ = v =
c

n
.

The frequency is the same on both sides of the interface.  This is easy to see.  At the interface the incoming radiation is varying at some fre-
quency and generally driving a system at some frequency induces oscillations at the same frequency.  Given that the frequencies are equal
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f = f1 = f2

the wavelengths must change.  Since wavelength is proportional to the wave speed we get

λ2

λ1
=

v2

v1
=

n1

n2
⟹ n1 λ1 = n2 λ2.

To view this a different way, if we define the vacuum wavelength as  λ0 = c / f   then the wavelength in a medium with index n is

λ =
λ0

n
.

The index of refraction is a property of a material. Because it is a ratio of a speed to a speed, it is dimensionless; it has units. For a vacuum
it is exactly 1. For air it is near 1 and we will usually take it as one, unless directed otherwise.

Material Index of Refraction - n
Vacuum 1 (exact)

Air (0 °C, 1 atm) 1.000277
Water 1.333

Plate Glass 1.52
Diamond 2.417

Polycarbonate 1.60

Snell's Law

As a consequence of the speed of light changing across an interface light will bend as it hits the interface. This is called refraction. Consider
light passing from one medium to another through a flat interface.  Take it to move from medium 1 with index n1  to medium 2 with index n2.
We will, as usual, measure the angles of the rays relative to the normal to the surface.

The diagram shows wave fronts and rays on either side of the interface.  Since the rays are perpendicular to the wave fronts, the angle between
the rays and the normal are the same as the angle between the wave fronts and the interface.  Enlarging the triangles at the center

λ1

λ2

D
θ1

θ2

and labeling the common side as D gives

sin θ1 =
λ1

D
and sin θ2 =

λ2

D
⟹

sin θ2

sin θ1
=

λ2

λ1
=

n1

n2
.

We can now write the law of refraction, called Snell's law, as

n1 sin θ1 = n2 sin θ2.

The usual convention with Snell’s law is that the light moves from medium 1 to medium 2.
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Incident, Reflected and Refracted Rays

When light in a medium with index n1  hits a medium with index n1  some of the light passes through and the angle θ2  is found by Snell’s
law. In addition to refraction some of the light is reflected back by the law of reflection. The incoming ray is called the incident ray.

θ1

θ2
θ1

n1 n2

Incident
Ray

Reflected
Ray

Refracted
Ray

Note that in this example the angle in medium 2 is larger than in medium 1.  This implies, by Snell's law, that the index in 2 is smaller than in 1.

θ1 < θ2 ⟹ sin θ1 < sin θ2 ⟹ n1 > n2

Example H.1 - Light from Air to Glass

Laser light of wavelength 632.9 nm shines from air to glass (n = 1.52). In the air the beam (ray) makes an angle of 35° from the normal
to the surface.

(a) Inside the glass, what is the angle between the light ray and the normal?

Solution
n1 = 1 , n2 = 1.52 , θ1 = 35 ° and θ2 = ?

This is a straightforward application of Snell’s law. Take the index for air to be one.

n1 sin θ1 = n2 sin θ2 ⟹ θ2 = sin-1
n1

n2
sin θ1 = 22.2 °

(b) What is the speed of light inside the glass?

Solution
First we list the relevant information. Call the vacuum wavelength λ0.

λ0 = 632.9 nm = 632.9×10-9 m , n = 1.52 and c = 3.00×108 m /s

The speed of light in a medium is

v = c /n = 1.97×108
m

s
(c) What is the wavelength inside the glass?

Solution
Relate the wavelength to the vacuum wavelength.

λ =
λ0

n
= 416 nm = 4.16×10-7 m

(d) What is the frequency of the light inside the glass?

Solution
The frequency inside is the same as the frequency outside.

f = f0 =
c

λ0
= 4.74×1014 Hz

You would get the same answer if you used f = v / λ.
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Total Internal Reflection

Consider the case where light moves across an interface to a region with lower index.  

n1 > n2

It follows that the angle from the normal increases (θ1 < θ2).  Moreover, there is some angle where there is no refracted ray.  In this case there is
only the reflected ray.  This is what we call total internal reflection.  This occurs at incident angles above some critical angle

θ1 ≥ θcrit,

where the critical angle occurs when the refracted angle goes to 90°.  That is, θ1 = θcrit  when  sin θ2 = 1, or

sin θcrit =
n2

n1
.

n1=1.333

n2=1

θ1=25.°

θ2=34.3°

θ1θ1

θ2

A water to air interface. Total internal reflection occurs when θ1 ≥ θcrit = 48.6 °

Example H.2 - A Water to Air Interface

(a) For what angles of light coming from below the surface of water will there not be a refracted ray? 

Solution
We first need to find the critical angle for total internal reflection.

n1 = 1.333 , n2 = 1, sinθcrit =
n2

n1
⟹ θcrit = sin-1

1

1.333
= 48.6 °

So for all incident angles larger than this θ1 ≥ θcrit there is no refracted ray.

(b) A kid stands in a 1.5-m deep pool with his eye just above the surface of calm water.  What is the largest horizontal distance x that a
small object can be from his feet for him to be able to see it?
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Solution
The light passes from the object to the surface and then refracts out to the eye. The incident angle on the water to air interface is
given by

d

x

θ1
⟹ tanθ1 =

x

d
where d = 1.5 m

The largest x is when θ1 = θcrit.

x = d tanθ1 ⟹ xmax = d tanθcrit = d tan 48.6 ° = 1.70 m

Prisms and Dispersion

Deflection by a prism

Consider light hitting a prism as shown above.  The apex angle Φ is the angle between the two refracting surfaces in the prism.  If the ray
incident on the prism is at an angle θ1from the normal it will refract to an angle θ2, which can be found by Snell’s law.

sin θ1 = n sin θ2

Now consider the triangle formed by the ray inside the prism and the top of the prism.  Summing the internal angles of this triangle must give
180 °. 

(90 ° - θ2) + (90 ° - θ2
′ ) + Φ = 180 ° ⟹ θ2 + θ2

′ = Φ

The above expression allows us to find θ2
′  from θ2 and Φ.  This lets us find θ1

′ .

sin θ1
′ = n sin θ2

′

The total angle of deflection δ  is found by summing the bending at both interfaces.  At the first the ray bends by θ1 - θ2  and at the second by
θ1
′ - θ2

′ .  It follows that δ is the sum.
δ = (θ1 - θ2) + (θ1

′ - θ2
′ ) = θ1 + θ1

′ - Φ

Dispersion
A prism splits light into the visible spectrum: red, orange, yellow, green, blue, indigo and violet.  We have just seen that using Snell's law

and knowing the prism’s apex angle Φ and the incident angle θ1, we can uniquely solve for the position of the ray leaving the prism in terms of
the index of refraction of the prism.  The fact that different colors refract to different angles implies that the index of refraction varies with color
(wavelength).  This is known as dispersion.

In  a  prism,  red is  the  color  that  refracts  the  least;  this  means  the  index of  red is  the  least.   Red has  the  longest  visible  wavelength.   It  is
generally the case that the index of refraction decreases with wavelength.  For instance in the case of crown glass the tabulated index is 1.52; this
is a mean value.  As the wavelength increases from 400 to 700 nm, the index decreases from about 1.53 to 1.51.
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H.3 - Images from Spherical and Parabolic Mirrors

Concave Mirrors

Spherical Mirrors and Spherical Aberration
When light from infinity (a plane wave) parallel to the central axis of a concave spherical mirror reflects off the mirror, the rays near the

central axis converge toward a point called the focal point, which we will see is at a position half the radius from the mirror.

The rays far from the central axis miss the focal point.  This is called spherical aberration.

Parabolic Mirrors
The geometrical shape that causes all rays to converge to a single focal point is a paraboloid, which is a parabola under rotation.

As long as the distance from the central axis is small (compared to the sphere's radius) the sphere approximates a paraboloid well.  This is the
basic assumption of our analysis of spherical mirrors.

Plane Waves from off the Central Axis

Point Source off the Central Axis
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Images from Concave Mirrors

We need to mathematically relate the image position di  and image height hi  to the object position do  and object height ho  for the case of a
concave  spherical  mirror.   In  the  preceding  diagram it  is  clear  that  every  ray  from the  tip  of  the  object  converges  to  the  tip  of  the  image.   It
suffices to draw just two rays to find the image position.  One ray we will draw is from the tip of the object to the point where the central axis
hits the mirror; this will reflect back at an equal angle below the central axis.  The other ray we will consider passes through the center of the
sphere; this will hit the surface normally and reflect straight backward.

These two rays give two pairs of similar triangles.

di

d0

h0

hi d0-R
R-di

h0

hi

These give the expressions

hi

ho
=

di

do
and

hi

ho
=

R - di

do - R

di

do
=

R - di

do - R
⟹

1

do
+

1

di
=

2

R

If  the  object  is  at  infinity  (do → ∞)  the  image  is  at  the  focal  point  (di = f ).   This  gives  f = R /2.   Since  the  image  is  inverted  we  choose,  by
convention, that hi < 0 and thus hi = -hi.  We can rewrite the above expressions as

1

do
+

1

di
=

1

f
and m =

hi

ho
= -

di

do
.

These expressions will apply generally to spherical mirrors, either concave or convex, and to thin lenses, either converging or diverging.  m  is
defined as the magnification; it has the same sign convention as the image height hi.

The preceding image is called a real image.  A real image occurs when the light rays converge to a point. A real image is on the side where
the light is. If you hold a screen to a real image you have a projected image on the screen.  If the object is inside the focal point, it turns out that
the reflected rays do not converge.  We trace the same rays as before but to find the image we trace the diverging rays backward to see where the
reflected  light  rays  appear  to  originate;  this  is  the  image  position.   Mathematically,  when  the  object  is  inside  the  focal  point   0 < do < f   the
image position is negative di < 0. There is no light at a virtual image. We will see that a plane mirror, like a bathroom mirror, gives only virtual
imagesl that are behind the mirror; ther eis no light there.
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The preceding image is called a real image.  A real image occurs when the light rays converge to a point. A real image is on the side where
the light is. If you hold a screen to a real image you have a projected image on the screen.  If the object is inside the focal point, it turns out that
the reflected rays do not converge.  We trace the same rays as before but to find the image we trace the diverging rays backward to see where the
reflected  light  rays  appear  to  originate;  this  is  the  image  position.   Mathematically,  when  the  object  is  inside  the  focal  point   0 < do < f   the
image position is negative di < 0. There is no light at a virtual image. We will see that a plane mirror, like a bathroom mirror, gives only virtual
imagesl that are behind the mirror; ther eis no light there.

Example H.3 - Concave Spherical Mirror

A concave spherical mirror with a 60-cm radius is used with a 10-cm high object.

(a) If the object is 40 cm from the mirror, then where is the image and what is the image height and magnification? Also, sketch the rays. 

Solution
We are given the radius, which then gives the focal length, the object height and object distance.

R = 60 cm ⟹ f =
R

2
= 30 cm , ho = 10 cm and do = 40 cm

With this we can solve for the image position.

1

do
+

1

di
=

1

f
⟹ di =

1

f
-

1

do

-1

= 120 cm

Here we used 1 / x = x-1. We can then solve for the image height and magnification.

m =
hi

ho
= -

di

do
⟹ hi = -ho

di

do
= -30 cm and m = -

di

do
= -3

Some comments: 

◼ With as single mirror (or lens as we will see later) a real image is always inverted and inverted images are always real. Inverted 
images have negative hi and m.

◼ We can use any length unit (cm, m, ft, in, ...) as long as we are consistent.
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(b)  If  the object  is  20 cm from the mirror,  then where is  the image and what  is  the image height  and magnification? Also,  sketch the
rays. 

Solution
We are given the radius, which then gives the focal length, the object height and object distance.

R = 60 cm ⟹ f =
R

2
= 30 cm , ho = 10 cm and do = 20 cm

With this we can solve for the image position.

1

do
+

1

di
=

1

f
⟹ di =

1

f
-

1

do

-1

= -60 cm

Here we used 1 / x = x-1. We can then solve for the image height and magnification.

m =
hi

ho
= -

di

do
⟹ hi = -ho

di

do
= +30 cm and m = -

di

do
= +3

This is an upright virtual image.

Images from Convex Mirrors

The center of a convex mirror is behind the mirror.  We take the radius to be negative.  An incident plane wave parallel to the central axis
will reflect away from a focal point behind the mirror.  When the reflected rays are extrapolated backward they meet at the focal point.  We also
take the focal length to be negative.

Light from an off-axis point source will reflect away from a point behind the mirror, the image position.  This will create a virtual image.
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The ray tracing is similar to the concave case except that the center is now behind the mirror.

An analogous analysis with similar triangles yields the same expressions

1

do
+

1

di
=

1

f
and m =

hi

ho
= -

di

do
.

It is still true that f = R /2 but now both R and f are negative.  It follows that since do > 0 we will always get di < 0 and thus a virtual image.

Example H.4 - Convex Spherical Mirror

A convex spherical mirror with a 60-cm radius is used with a 10-cm high object. If the object is 20 cm from the mirror, then where is the
image and what is the image height and magnification? Also, sketch the rays. 

Solution
We are  given  the  magnitude  of  the  radius  and  we  have  to  add  its  sign  by  hand.  This  then  gives  the  focal  length.  The  object
height and object distance are also given.

R = -60 cm ⟹ f =
R

2
= -30 cm , ho = 10 cm and do = 20 cm

With this we can solve for the image position.

1

do
+

1

di
=

1

f
⟹ di =

1

f
-

1

do

-1

= -12 cm

Here we used 1 / x = x-1. We can then solve for the image height and magnification.

m =
hi

ho
= -

di

do
⟹ hi = -ho

di

do
= +6 cm and m = -

di

do
= +0.6

Flat Mirrors
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A flat mirror can be viewed as a special case of a spherical mirror with R → ±∞.  This implies that f → ±∞  and  1 / f → 0

1

do
+

1

di
=

1

f
= 0 ⟹ di = -do

m =
hi

ho
= -

di

do
⟹ m = 1 and hi = ho

This is what we would expect:  There is an upright virtual image the same size as the object and equal distance behind the mirror.

Example H.5 - A Make-up Mirror

A  magnifying  mirror,  like  a  make-up  mirror,  is  used  to  create  an  enlarged  upright  image.  An  upright  image  must  be  virtual.  For  an
enlarged virtual image, the mirror must be concave. Suppose we want to design such a mirror so that when the object (the face) is 10-cm
in front of the mirror, the image is upright and has a magnification of three. What radius concave mirror is required?

Solution
We are given the magnification and the object position. We are looking for the radius.

m = 3, d0 = 10 cm , R = ?

We can solve for the image position.

m = -
di

do
⟹ di = -m do = -30 cm

From this we can find the focal length

1

do
+

1

di
=

1

f
⟹ f =

1

do
+

1

di

-1

= 15 cm

and the radius.

f =
R

2
⟹ R = 2 f = 30 cm
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H.4 - Images from Thin Lenses

Thin Lenses

A lens has two refracting surfaces. Solving for images from two refracting surfaces is a complex thing but when the lens is thin, meaning
that  the  two surfaces  are  close  to  each other,  the  problem becomes simple.  To relate  the  image position and height  to  the  object  position and
height, we have the same equations we used for mirrors.

1

do
+

1

di
=

1

f
and m =

hi

ho
= -

di

do
.

Although we have two surfaces that refract we will treat a thin lens as if all refraction happens at the central plane

General Sign Conventions in Optics

In the case above where images were formed by mirrors, the sign conventions were relatively simple.  do  is positive when the object is on
the front side of the mirror.  Similarly, di, f and R are positive when the image, focal point and center, respectively, are on the mirror's front side.  

With a lens the light leaves on the opposite side where it enters.  Label the ray that approaches a mirror or lens as the entering ray and the
ray leaving as the exiting ray; this is the reflected ray for mirrors or the refracted ray for a lens.

A  general  sign  convention  can  now be  given.   do  is  positive  when  the  object  is  on  the  side  of  the  entering  ray,  the  side  where  the  light
originates.   di, f and R are positive when the image, focal point and center, respectively, are on the side of the exiting ray, on the side where the
light ends up.

Converging Lenses

A thin lens with a positive focal  length is  called a converging lens.   This is  analogous to a concave mirror mathematically.   If  the object
distance is larger than the focal length do > f   then there is a real image and when the object distance is less than the focal length do < f  there is a
virtual image.  To trace the rays: Draw one ray that passes straight through where the central axis hits the lens.  Draw the other ray parallel to the
central axis; this will bend through the focal point.  The two rays (as all rays do) will converge to the image.  Below are examples of ray tracing
in both cases.
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Diverging Lenses

A diverging lens has a negative focal length.  The ray tracing is similar but the ray that begins parallel to the central axis will diverge away
from the focal point, which is on the same side as the object.  Here is the ray tracing for a diverging lens.

Example H.6 - A Slide Projector

A  slide  projector  uses  a  bright  light  to  shine  through  a  small  slide.  The  slide  is  the  object  and  it  is  projected  onto  a  screen  using  a
converging lens. For a focused image, the image is on the screen. Note that this is the same optics as a classroom projector, where there
is a small backlit LCD screen that is focused, via a converging lens, to a screen.

A slide projector uses a converging lens with a 12-cm focal length to project a 35-mm wide slide to fill a 2.1-m wide screen. Relative to
the lens, where must the slide and screen be placed?

Solution
We  are  given  the  focal  length  f = 12 cm  and  the  object  and  image  heights.  (They  are  described  as  widths,  but  that  is
unimportant.)  ho = 35 mm = 3.5 cm and hi = 2.1 m = 210 cm.  The use  of  the  absolute  value  for  hi  is  a  bit  subtle.  We will  see
that the image is inverted but a positive hi will give us a clear inconsistency. 

f = 12 cm , ho = 3.5 cm and hi = ±210 cm.

A projected image must be a real image.

hi

ho
= -

di

do
⟹ di = -

hi

ho
do
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For a single lens or mirror, the object position do must be positive and a real image must have a positive di. If both ho and hi are
positive then di is negative and we have an inconsistency. 

hi = -210 cm ⟹ di = -
hi

ho
do = 60 do

We now have two equations for the two unknowns do and di

1

do
+

1

di
=

1

f
⟹

1

do
+

1

60 do
=

1

12 cm

Cross-multiplying gives

12 cm 1 +
1

60
= do

We can then solve for do and di.

do = 12.2 cm and di = 60 do = 732 cm
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