
Chapter J

Relativity
Blinn College - Physics 1402 - Terry Honan

J.1 - Before 1905

The Principle of Relativity

The principle of relativity is built in to Newtonian mechanics. It is a result of Galileo's observations on motion. This notion of relativity is
known as Galilean Relativity and should be contrasted with Special Relativity which was introduced by Albert Einstein in 1905.

Moving with a constant velocity is equivalent to being at rest.
If someone (preferably a passenger) throws a ball straight upward in a car moving with a constant velocity, it will move in a way that is indistin-
guishable from free fall. To an observer on the side of the road, the ball would move as a projectile, but to both observers the acceleration would
be the same, a downward acceleration of g. If the car is turning, or accelerating in any way, then there will be false forces and the motion will
deviate for free fall. 

A frame of reference is just some coordinate system we use to study motion. Recall from Physics I, that an inertial frame is a non-accelerated
frame. The principle of relativity says that all inertial frames are equivalent; moving with a constant velocity is indistinguishable from being at
rest. Suppose some experiment is performed in a van moving at a constant velocity. (We assume the road is as smooth as possible.) The result of
that experiment will be give the same result as if the van were at rest. Nature has no absolute rest frame.

Relative Motion

In Physics I, relative motion was discussed.  Suppose you have three things labeled 1, 2 and 3. The velocity of 2 relative to 1 is v21, v13  is
the velocity of 1 relative to 3 and v23 is the velocity of 2 relative to 3. The relative motion expression from Physics I was just.

v23 = v21 + v13

Consider a one-dimensional example, suppose I was walking toward you at 1 m /s and throwing a ball toward you at 2 m /s relative to me, then
the ball moves at 3 m /s relative to you.

vby = vbm + vmy ⟹ +3 m /s = 2 m /s + 1 m /s where m ↔ me, y ↔ you and b ↔ ball

That is, the velocity of the ball to you, is the sum of the velocity of the ball to me and the velocity of me to you.

Light and Electromagnetism

Now suppose that I am moving toward you at half the speed of light with a flashlight. The light leaves the flashlight, relative to me, at c,
which we write vlm = c, where l = light. Clearly we have just replaced the ball with the light.

vly = vlm + vmy ⟹
3

2
c = c +

c

2
So the light is now moving toward you at (3 /2) c.  This should bother you, because what hits you is light and that has to move at the speed of
light.  To  expand  on  this:  from  the  equations  of  electromagnetism,  electromagnetic  waves  travel  at  c  and  this  can  be  written  in  terms  of  the
electromagnetic constants, μ0 and ε0.

c =
1

μ0 ε0

.

To the nineteenth century physicist, this implied that electromagnetism violated relativity, this age-old principle of physics. It was believed
that there was a preferred rest frame, the frame of the “ether”; in only this frame the equations of electromagnetism were valid and light travels at
the speed of light. A similar situation occurs with sound waves; sound travels at the speed of sound with respect to the stationary air. There is a
preferred rest frame, that of the air.



Perhaps the only problem is the velocity addition formula; could we just toss that out? The only assumptions behind the velocity addition
formula are absolute space and absolute time, meaning that whether moving or not we all agree on lengths and times.

Space and Time

Space  and  time  are  absolute  in  Galilean  relativity.  Absolute  space  means  that  space  is  three  dimensional  Euclidean  space.  The  length  of
something in a stationary frame is the same as the length in a moving frame.

Δx2 + Δy2 + Δz2 = Δx′2 + Δy′2 + Δz′2

In this expression the left-hand side is the squared-length in a stationary frame and the right-hand side is the squared-length relative to a moving
frame

Absolute time implies that the time between two events (an event is some position at some time) is the same for all observers.

Δt = Δt′

Here Δt and Δt′ are the times in rest frame and a moving frame, respectively.

Einstein's Special Relativity eliminated the notions of absolute space and time.
In  1905  Einstein  realized  that  electromagnetism was  valid  in  all  inertial  (non-accelerated)  frames  and  he  put  relativity  back  into  fundamental
physics.  To do this  however  he  had to  modify  the  notions  of  absolute  space  and time that  were  implicit  in  Galilean relativity.  Einstein’s  first
paper on relativity was: “On the Electrodynamics of Moving Bodies”; he was considering electromagnetism and relative motion.

J.2 - Length and Time

The Postulates of Relativity

Einstein’s theory of special relativity is based on two postulates.

The Principle of Relativity
The laws of physics are the same in all inertial frames of reference.

The Constancy of the Speed of Light
The speed of light in a vacuum c, is the same in all inertial frames of reference. This is just applying the first postulate, the principle of relativity,
to electromagnetism. As we saw in the previous section, if the laws of electromagnetism are the same in all frames, then light must always travel
at the same speed in a vacuum.

Frames of Reference

One cannot just throw out notions like absolute space and absolute time without replacing them with different and substantial concepts of
space and time. For an inertial (non-accelerated) frame we can define lengths and times clearly. We will first consider this and then discuss how
lengths and times are different in different inertial frames. If a meter stick is at rest relative to your inertial frame of reference then that defines a
meter for you. Lay that meter stick along a line and mark off ticks of one meter. That labels position. 

Time  is  a  bit  more  subtle.  When  you  are  at  rest  with  a  clock,  that  clock  defines  time  for  you.  How  do  you  define  time  for  a  frame  of
reference? If two clocks are at rest with respect to each other we can synchronize them: Suppose you are at position A with a clock and someone
at a different position B also has a clock. You send a light signal from your position A to the other position B. At B they have a mirror to reflect
the light signal back. The person at B records the time the light signal hits and the person at A then averages the times when the signal was sent
and returned. The average of the times for A is then set as simultaneous with the time the person at B recorded. Imagine a frame of reference as
an array of synchronized clocks at each position in the frame.
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How do we describe motion in a frame of reference? In the diagram below we have an axis with a series of marks labeling positions. At
each mark place a clock and synchronize all these clocks following to the procedure described above. If a rocket is zipping by at high speeds,
then  we  record  the  time  as  read  by  a  clock  as  the  rocket  passes  that  clock.  This  is  the  relevant  time  for  studying  motion  within  a  frame  of
reference.  It  is  not  when one person sees  something pass  a  distant  point,  because there  is  a  time delay for  the light  to  get  back.  It  is  the time
recorded at the position of the moving rocket that we record. We then can, as we did in Physics I, write a graph of position versus time.
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In  discussing  relativity,  we  often  use  the  term event.  An  event  is  a  point  in  space  at  an  instant  in  time.  To  label  an  event  you  specify  a
position and a time, in three dimensions it  takes four numbers (x, y, z, t)  to label an event.  This is  in line with the standard usage of the term
event; if someone invites you to a party, then to describe the event in an invitation requires saying where it is and when it will be.

The Light Clock and Perpendicular Lengths

We want to relate times in different frames of reference. To do this we will exploit the fact that the speed of light is the same in all frames
and invent type of clock, a light clock. If we reflect light between two parallel mirrors separated by a distance d then the time for the light signal
to return is 

Δt0 =
2 d

c
since the total distance the light travels is 2 d.  Think of this as one tick of our light clock. We refer to this time Δt0  as the proper time. Proper
time is the time between two events at the same position; it is what a clock reads in its rest frame.

Now we will put our light clock in a moving rocket and relate time in the rocket’s frame to the time relative to a fixed frame. Before we can
do this we must establish something about lengths. Lengths that are perpendicular to the direction of motion are the same in all frames. Say you
have two meter sticks A and B oriented in the y-direction while the relative motion is in the x-direction. Suppose that in relativity, lengths are
such that a moving stick is shorter than the longer one. That means in the frame where A is at rest, B is shorter but in the frame where B is at rest
then A would be shorter.  If  the moving meter  stick were longer we would have a similar  situation.  To make this  point  more vividly,  imagine
putting knives on the ends of both meter sticks so as they pass the shorter one would cut the longer one. Then in different frames different meter
sticks would be cut and this shows a clear inconsistency. So, lengths perpendicular to the direction of motion are the same in all frames.
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Time Dilation

We now arrange our light clock in a moving rocket to be perpendicular to the rocket’s velocity. As mentioned above, in the frame of the
rocket, the proper time is Δt0 = 2 d /c. We now look at the light clock as it speeds through a stationary frame and find the time Δt in that frame.

Rocket's Frame Stationary Frame

Light travel time = ΔtLight travel time = Δt0

cΔt/2

vΔt/2

dd= cΔt0/2

v v v

On the left is a light clock in its rest frame. On the right it is moving at high      
speeds. Note that we will discuss the rocket’s contraction in the next section.

Since the light always moves at c, the distance it moves in the stationary frame when moving from one mirror to the other is c Δt /2. Since the
rocket has moved by v Δt /2 and since d is the same in both frames we get a right triangle. We then apply the Pythagorean theorem to this.

cΔt/2 d= cΔt0/2

vΔt/2

⟹
c Δt

2

2

=
v Δt

2

2

+
c Δt0

2

2

⟹ c2 - v2 Δt2 = c2 Δt02

This allows us to solve for Δt in terms of Δt0.

Δt =
Δt0

1 - v2 c2
= γ Δt0

where we have defined the Lorentz factor γ by

γ =
1

1 - v2 c2

γ has the properties that as v approaches zero, γ approaches one and as v approaches c, γ approaches infinity. For routine everyday speeds this
Lorentz  factor  γ  is  essentially  1.  If  using  your  calculator,  you  try  to  calculate  this  with  a  car’s  speed  for  v,  you  will  get  exactly  one.  This  is
because your calculator does not keep enough digits to see the difference. For very small speeds it is actually more accurate to use an approxima-
tion. For speeds much less than c, which we write v << c we have the approximation

γ =
1

1 - v2 c2
≃ 1 +

1

2

v2

c2
for v << c

Solving for the speed in terms of γ gives.

v = c 1 - 1γ2

Example J.1 - A Trip to Alpha Centauri

Alpha  Centauri  is  a  nearby  star  4.37 ly  away,  where  a  light-year,  written  ly,  is  the  distance  light  travels  in  one  year.  1 ly = c ·1 yr.
Suppose a rocket  travels  from the earth to Alpha Centauri  at  the speed of 0.99 c.  How long does the trip take in years,  relative to the
earth and relative to the rocket?

Solution
We are given 

d = 4.37 c ·1 yr and v /c = 0.99

Calculate the Lorentz factor

γ =
1

1 - v2 c2
=

1

1 - 0.992
= 7.089
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Now, solve for the time relative to the earth.

d = 4.37 c ·yr , v = 0.99 c ⟹ Δt =
d

v
=

4.37 c ·yr

0.99 c
=

4.37

0.99
yr = 4.41 yr

Next, find the time in the rocket’s frame, the proper time.

Δt = γ Δt0 ⟹ Δt0 = Δt / γ = 0.623 yr

This means that in the time when people on the earth age 4.41 yr, people in the rocket would age 0.623 yr.

Example J.2 - Time Dilation in a Car

Suppose you drive in your car at 30 m /s for 2 hours. How much less will you have aged in that time than if you stayed still?

Solution
What we are looking for is the difference between Δt, if you stayed still, and Δt0 when you are moving.

v /c =
30 m /s

3×108 m /s
= 10-7

Δt - Δt0 = (γ - 1) Δt0

If you calculate γ on any calculator or computer with floating point math you will get γ = 1 and thus get a zero result. Ironically,
we have to use the approximate formula to get an accurate result for γ - 1. The result is very very small but not zero. For v << c

γ =
1

1 - v2 c2
≃ 1 +

1

2

v2

c2
⟹ γ - 1 =

1

2

v2

c2
= 5×10-15

So we get for the time difference

Δt0 = 2 h = 2×3600 s ⟹ Δt - Δt0 = (γ - 1) Δt0 = 3.6×10-11 s

Example J.3 - The Decay of the Muon

When very high energy cosmic rays hit the atmosphere, about 10 km above the earth, they interact with the atmosphere and one of the
particles that can be created is a muon. A muon is an elementary particle that behaves like a heavy electron; it is about 207 times more
massive than the electron. Unlike the electron it is unstable and decays with a half-life of 2.2×10-6 s. What this means is that in the rest
frame of a muon it has a 50% probability of decaying in that time. These muons are created with a very relativistic speed of 0.999 c. 

(a) How far does a muon travel in 2.2×10-6 s at this speed?

Solution
This is a simple calculation. We are given v and t and want the distance d.

c = 3.00×108 m /s v = 0.999 c = 3.00×108 m /s and t = 2.2×10-6 s ⟹ d = v t = 677 m

This shows that a muon created in the upper atmosphere would never make it to earth if this were its lifetime. However, the half-
life refers to its lifetime in the muon’s rest frame and it lasts longer relative to the atmosphere.

(b) What is the half-life of a muon in the frame of the atmosphere?

Solution
First find the Lorentz factor.

γ =
1

1 - v2 c2
=

1

1 - 0.9992
= 22.4

The given half-life is the proper time Δt0. The time relative to the atmosphere is Δt.

Δt0 = 2.2×10-6 s ⟹ Δt = γ Δt0 = 5.05×10-5 s

(c) How far does a muon travel in the time found in part (b)?
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Solution
d = v Δt = 15 100 m = 15.1 km

These muons will make it to the ground.

Length Contraction

The proper time Δt0  is the time measured by a clock in its rest frame. Similarly, we will define the proper length L0  to be the length of a
ruler in its rest frame or, equivalently, the distance between two events in a frame where they are at the same time. Suppose a rocket is moving
through the solar system at a high speed v moving past the earth and mars. The distance between the planets in the solar system’s frame is L0.

v

L0

Solar System's Frame

v v

L

Rocket's Frame
There are two events, the rocket passing the earth and the rocket passing mars. The time between these two events in the rocket’s frame is Δt0
and the distance is L. In the solar system’s frame the time between the events is Δt and the distance is L0. The speed of the solar system relative
to the rocket is the same as the speed of the rocket relative to the solar system. 

v =
L

Δt0
=

L0

Δt
⟹

L

L0
=

Δt0

Δt
=

1

γ

We then get the result

L = L0 / γ = L0 1 - v2 c2

Since the Lorentz factor γ is greater than one γ ≥ 1, the length of a moving rod or ruler is contracted. Summarizing for moving rods: lengths
parallel to the direction of the velocity are contracted and, as we saw previously, lengths perpendicular to the direction of motion are unchanged.

Example J.4 - A Rocket Moving through the Solar System

Suppose a rocket is 55-m long and 20-m wide (in its rest frame.) Take the length to be in the direction of motion and the width to be
perpendicular. If this rocket is moving through the solar system at 85 % the speed of light, first moving past the earth and then past mars
when the distance between the earth and mars is 2.2×1011 m. (This is the speed that was chosen for the diagram above, so the relative
lengths in the diagram apply here.)

(a) What is its length and width of the rocket relative to the solar system?

Solution
We are given the proper length L0 and the speed and we are looking for L, the contracted length.

L0 = 55 m , v = 0.85 c and γ =
1

1 - v2 c2
=

1

1 - 0.852
= 1.89

The length to the solar system is then

L = L0 / γ = 29.0 m .

The width is perpendicular to the direction of motion, so that is the same in both frames.

W = W0 = 20 m

(b) What is the distance between the earth and mars relative to the rocket?
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Solution
We are given the proper length L0. The speed and γ are the same. We want L, the contracted length.

L0 = 2.2×1011 m ⟹ L = L0 / γ = 1.16×1011 m

Aside on Space-time

In 1908, Hermann Minkowski gave a geometrical interpretation to special relativity. Minkowski was a college math professor of Einstein’s
and, although he was not that impressed with Einstein as a student, changed his impression of his former student after his 1905 relativity papers.
Let us begin with our time dilations formula. 

Δt =
Δt0

1 - v2 c2

Multiply both sides by the denominator and square

Δt21 - v2 c2 = Δt02

The speed v is the distance per time v = Δs /Δt. Insert this for the speed and also multiply by c2.

Δt2 c2 -
Δs2

Δt2
= c2 Δt02 ⟹ c2 Δt2 - Δs2 = c2 Δt02

Δs is the distance between two positions so, Δs2 = Δx2 + Δy2 + Δz2. Multiplying the expression above by -1 and substituting for Δs2 gives

Δx2 + Δy2 + Δz2 - c2 Δt2 = -c2 Δt02

The right-hand side of the above expression involves only the proper time, which is the time between two events in the frame where they are at
the  same position.  The left-hand side  involves  the  distance  and time between the  same two events  in  any frame.  But  the  left-hand side  is  the
same for all frames. This give Minkowski’s result.

Δx2 + Δy2 + Δz2 - c2 Δt2 = Δx′2 + Δy′2 + Δz′2 - c2 Δt′2

Although lengths and times are different  in different  frames,  the length-squared minus time-squared is  the same in all  frames,  where we must
multiply time by c to make the units work out.

The  reason  for  the  term  space-time  is  that  the  underlying  geometry  of  special  relativity  is  four-dimensional,  where  time  is  the  fourth
dimension.  However,  because of the minus sign before the time variable,  the time variable is  still  different  than spatial  variables.  One way of
looking at Minkowski’s result is that special relativity replaced the concepts of absolute space and time with an absolute space-time.

Relativistic Addition of Velocities

We will only consider the relativistic addition of velocities in the one-dimensional case where all  the velocities are in the same direction.
The three-dimensional formulas are more complex. The classical (meaning before relativity) one-dimensional formula was v23 = v21 + v13. View
these as one-dimensional vectors where a 1D vector is a real number and the sign gives its direction. The relativistic formula is

v23 =
v21 + v13

1 + v21 v13 c2

I am following the textbook's notation; it can be confusing to keep track of the 1, 2, 3 labels. The key thing is to decide how you would combine
the velocities classically, and then divide by the appropriate denominator. For the first example, lets consider the example I referred to in the first
section.

Example J.5 - Light from a Moving Source

(a)  Suppose I  am in a rocket approaching you at  half  the speed of light  with a flashlight aimed at  you.  What is  the speed of the light
hitting you?

Solution
Hopefully, at this point it is obvious that the answer is c. But show that from the formulas.

vlm = c (vel. of light to me), vmy =
c

2
(vel. of me to you) and vly = ? (vel. of light to you)
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vly =
vlm + vmy

1 + vlm vmy c2
⟹

c + c /2

1 + c×c/2
c2

=
3 c /2

3 /2
= c

(b) Suppose instead I am moving away from you and and shining the light back at you?

Solution

vlm = c (vel. of light to me), vmy = -
c

2
(vel. of me to you) and vly = ? (vel. of light to you)

vly =
vlm + vmy

1 + vlm vmy c2
⟹

c - c /2

1 + c×(-c/2)
c2

=
c /2

1 /2
= c

So our new velocity addition formula now gives the expected result.

Example J.6 - A Probe from a Rocket

(a)  Suppose  a  rocket  moving  toward  you  at  90%  the  speed  of  light  launches  a  probe  moving  toward  you  at  99%  the  speed  of  light
relative to the rocket. What is the speed of the probe relative to you?

Solution
vpr = 0.99 c (vel. of probe to rocket), vry = 0.90 c (vel. of rocket to you) and vpy = ? (vel. of probe to you)

vpy =
vpr + vry

1 + vpy vry c2
⟹

0.99 c + 0.90 c

1 + (0.99) (0.90)
= 0.9995 c

(b) Suppose instead the rocket is moving away from you at the same speed and launching the probe back at you. What is the speed of
the probe relative to you?

Solution
vpr = 0.99 c (vel. of probe to rocket), vry = -0.90 c (vel. of rocket to you) and vpy = ? (vel. of probe to you)

vpy =
vpr + vry

1 + vpy vry c2
⟹

0.99 c - 0.90 c

1 + (0.99) (-0.90)
= 0.826 c

J.3 - Momentum, Energy and Mass

Rest Mass and Relativistic Mass

When reading about mass in relativity, it is easy to get confused. There are two notions of mass: The rest mass m0 is the mass you measure
when you set something (at rest, of course) on a scale. When we tabulate masses of particles those are the rest masses. The other notion is the
relativistic mass, which we will refer to as mr. Some books use m for the rest mass and some use it for the relativistic mass. The Walker text is
particularly bad here; they write inconsistent formulas jumping back and forth between the two notations. We will avoid writing m at all, and use
the subscripts, m0 and mr.

The rest mass of an object or a particle is a fixed thing. As a particle increases it’s speed, the mass, its relativistic mass, increases.

mr =
m0

1 - v2 c2
= γ m0

Here the γ is the same Lorentz factor as before. Because of the properties of the Lorentz factor, as the speed approaches c, the relativistic mass
goes to infinity.

Example J.7 - An Electron in a Particle Accelerator

Suppose an electron is accelerated to a speed of 0.999995 c in a particle accelerator. 

(a) What is the relativistic mass of the electron?
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Solution
From the speed we can find the Lorentz factor γ

v = 0.999995 c ⟹ γ =
1

1 - v2 c2
=

1

1 - 0.9999952
= 316

Using the listed value of the mass of the electron as the rest mass we get the relativistic mass.

m0 = melectron = 9.11×10-31 kg ⟹ mr = γ m0 = 2.88×10-28 kg

Energy and Kinetic Energy of a Particle

The relativity formula everyone knows is E = m c2. The m here is the relativistic mass and not the rest mass. We will first discuss this in the
context of a particle or object moving at high speeds. The E = m c2 formula applies more generally than just the motion of a particle; this will be
discussed in the next section.

For a particle or object with a rest mass m0 moving with a speed v has a total energy of 

E = mr c2 = γ m0 c2 =
1

1 - v2 c2
m0 c2.

But what is its kinetic energy. When the velocity goes to the we get E0 = m0 c2. This is called the rest energy. The kinetic energy, which is the
energy of motion, is then

K = E - E0 = mr c2 - m0 c2 = (γ - 1) m0 c2 =
1

1 - v2 c2
- 1 m0 c2.

One cannot propose a new theory in physics that invalidates all  that came before it.  What of all  those problems you solved using K = 1
2

m v2?
Are they now wrong? Is all of Newtonian mechanics wrong? Any new theory must reproduce the successes of the previous theory, at least as a
special case. 

Consider the case of small speeds v << c, where small means when compared to c. Recall that for small speeds.

γ =
1

1 - v2 c2
≃ 1 +

1

2

v2

c2
for v << c

Inserting this into our expression for kinetic energy gives

K = (γ - 1) m0 c2 =
1

2

v2

c2
m0 c2 =

1

2
m0 v2.

So  all  is  good;  the  new  formula  reproduces  the  old  formula  in  the  limit  of  small  speeds.  So  relativity  provides  a  correction  to  Newtonian
mechanics when speeds are large, but Newtonian mechanics is now a special case of relativistic mechanics when speeds are small.

1

4
c

1

2
c

3

4
c c

v

m0 c2

2 m0 c2

3 m0 c2
K

K = (γ-1)m0 c2

1

2
m0 v2

Above is a graph of kinetic energy versus speed and the classical formula 1
2

m0 v2 is included for reference. Note that as the speed approaches c,
the kinetic energy goes to infinity. This means that it  takes more and more energy to get closer and closer to the speed of light and a massive
object, anything with a rest mass, cannot be accelerated to c but with enough energy, it can get arbitrarily close to c.

Some particles are referred to as massless particles. This means the particle has no rest mass. There is energy, so there is a relativistic mass
mr = E c2. However, the energy formula E = γ m0 c2 does not apply, since both γ and m0 are undefined. Massless particles must always travel at
the speed of light. An example of a massless particle is a photon, the particle of light. Since light must always travel at c, then the photon must be
massless and always travel at c.
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Some particles are referred to as massless particles. This means the particle has no rest mass. There is energy, so there is a relativistic mass
mr = E c2. However, the energy formula E = γ m0 c2 does not apply, since both γ and m0 are undefined. Massless particles must always travel at
the speed of light. An example of a massless particle is a photon, the particle of light. Since light must always travel at c, then the photon must be
massless and always travel at c.

Example J.8 - Grandma’s Particle Accelerator

One might think that  it  requires a particle accelerator to get  particles up to relativistic  speeds,  however old tube televisions,  like what
your grandmother might have had in her living room, involve sufficiently high voltages to accelerate electrons up to relativistic speeds.
Tube-based televisions and computer monitors are called CRTs, where CRT stands for cathode ray tube; a cathode ray is just an archaic
term for a beam of electrons. In a CRT, electrons are accelerated across large voltages and then hit a phosphorescent screen to create a
dot; electric and magnetic field manipulate the beam to make an image.

The picture tube of a CRT-based television uses a voltage of 25 kV to accelerate electrons. 

(a) Calculate the kinetic energy of the electrons after accelerating from rest across this voltage.

Solution
This  is  essentially  a  Chapter  20  problem.  The  conservation  of  energy  allows  us  to  find  the  kinetic  energy.  K = ΔK = Kf - Ki
since it starts from rest. The conservation of energy can be written as 0 = ΔK + ΔU, To avoid considering signs take the absolute
values.

K = ΔK = ΔK = ΔU

The change in potential energy can be written in terms of the potential difference.

ΔU = Q ΔV = -e ΔV ⟹ ΔU = e ΔV  = e V

Where we have used the voltage V for the magnitude (absolute value) of the change in electric potential V = ΔV .

The relevant given information and constants are

e = 1.60×10-19 C and V = 25 000 V

The expressions above give an expression for the kinetic energy

K = e V = 4.0×10-15 J

(b) Calculate the speed of the electrons and also give that speed as a fraction of c.

Solution
The constants needed are

melectron = 9.11×10-31 kg , c = 3.00×108 m /s

From the kinetic energy we can find the Lorentz factor γ

K = (γ - 1) m0 c2 ⟹ γ = 1 +
K

m0 c2
= 1 +

K

melectron c2
= 1.0488

 and from that, using the expression for v from γ given in the last section, find the speed. 

γ =
1

1 - v2 c2
⟹ v = c 1 - 1γ2 = 9.04×107 m /s

Diving this by c gives

v /c = 0.301

So this old television is accelerating electrons up to 30% the speed of light!

(c) Calculate the speed of the electrons using the incorrect non-relativistic Physics I formula, K = 1
2

m v2  and give the percent error in v
when using the old formula.

Solution

K =
1

2
melectron vnr

2 ⟹ vnr =
2 K

melectron
= 9.371×107 m /s
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% error =
vnr - v

v
×100 % = 3.62 %

Example J.9 - An Electron in a Particle Accelerator (continued)

Suppose an electron is accelerated to a speed of 0.999995 c in a particle accelerator. 

(b) What is the kinetic energy of the electron?

Solution
As we did before, from the speed we can find the Lorentz factor γ

v = 0.999995 c ⟹ γ =
1

1 - v2 c2
=

1

1 - 0.99952
= 316

But now we find the kinetic energy using the rest mass and c.

m0 = melectron = 9.11×10-31 kg and c = 3.00×108 m /s ⟹ K = (γ - 1) m0 c2 = 2.58×10-11 J

Mass-Energy Equivalence

In Einstein’s first relativity paper in 1905 discussed the kinetic energy of a particle, but his most famous result E = m c2 was introduced in a
different paper later the same year: “Does the Inertia of a Body Depend upon Its Energy-Content?” Inertia refers to the inertial mass, which is
the mass associated with Newton’s second law. The m refers to what we are labeling as the relativistic mass.

E = mr c2

Although we had this result already for a particle, it is a more general thing. Suppose you have some nuclear or chemical reaction. If the reaction
gives off energy then the masses of the byproducts of the reaction are less than the constituents before the reaction. In chemistry class you are
taught the conservation of mass. Fundamentally, mass is not conserved. In a chemical reaction, where you just move around electrons to change
bonds, the energy differences ΔE  are small, meaning that mass difference Δm = ΔE c2  is negligibly small compared to the original masses and
can be ignored. Fundamentally, mass is not conserved, but its conservation is close enough to being exact for purposes of chemistry. In a nuclear
reaction, where the structure of the atomic nucleus changes, the energy difference are still small but measurable and not negligible.

In  particle  physics  if  a  collision has  sufficient  energy,  by E = m c2  to  create  a  new particle  then new particles  can be formed.  These new
particles must be consistent with conservation laws and the constraints of fundamental interactions.  There are a huge number of new particles
discovered this way. For every particle there is an antiparticle which has the same mass and the opposite charge. The antiparticle of an electron is
called a positron. The antiparticles of protons and neutrons are antiprotons and antineutrons. A photon is its own antiparticle. If all of the energy
stored in the mass of something could be released the resulting energy release would be huge; however this energy is not typically available. An
example where all the available energy is releases is when a particle collides with its antiparticle. The resulting annihilation releases all of the
2 m c2  of available energy. Antimatter is  matter made from antiparticles.  A bound state of a positron and antiproton is an anti-hydrogen atom.
When matter and antimatter collide, essentially all of its available rest energy is released. Antimatter has been created in only small quantities
and is still mostly the stuff of science fiction.

Example J.10 - A Hydrogen Atom

It takes 2.18×10-18 J of energy to break up a hydrogen in its ground state to a separate proton and electron. Which has more mass the
atom or the separate proton and electron and by how much? Calculate the percentage of the total mass this it. It should be a very small
amount.

Solution
Since  it  takes  energy  to  break  up  the  atom into  its  constituent  parts,  the  atom has  less  energy  and  thus  less  mass.  The  given
values and needed constants are.

ΔE = 2.18×10-19 J , c = 3.00×108 m /s , mproton = 1.67×10-27 kg and melectron = 9.11×10-31 kg

The mass change Δm is then found

Δm =
ΔE

c2
= 2.42×10-35 kg
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The fractional change can then be found

Δm

mtotal
=

Δm

mproton + melectron
= 1.45×10-8

Example J.11 - An Electron-Positron Pair

What is the smallest amount of energy needed to create an electron-positron pair?

Solution
The  minimum amount  of  energy  is  to  create  both  with  their  minimum mass,  their  rest  mass.  For  both  that  is  the  mass  of  an
electron, since the positron has the same mass as an electron.

c = 3.00×108 m /s and melectron = 9.11×10-31 kg

The minimum energy is then given by

E = 2 melectron c2 = 1.64×10-13 J

Relativistic Momentum

Momentum is still m v but which m? It depends on the relativistic mass. For a particle or body with a rest mass, we have.

p = mr v = γ m0 v =
1

1 - v2 c2
m0 v

This cannot apply to a massless particle. For massless particles we can write v = c and mr = E c2 and get:

p = mr c =
E

c2
c = E /c

Recall in the chapter on electromagnetic radiation we had for radiation p = U /c,  where U  is the energy. It should be expected that a photon, a
particle of light should satisfy the same.

Example J.12 - An Electron in a Particle Accelerator (continued again)

Suppose an electron is accelerated to a speed of 0.999995 c in a particle accelerator. 

(c) What is the momentum of the electron?

Solution
The speed is the same as before so Lorentz factor γ must also be the same 

v = 0.999995 c ⟹ γ =
1

1 - v2 c2
=

1

1 - 0.99952
= 316

But now we find the momentum using the rest mass and c.

m0 = melectron = 9.11×10-31 kg and c = 3.00×108 m /s ⟹ p = γ m0 v = 8.64×10-20 kg ·m /s

Example J.13 - Momentum of a Photon, a Massless Particle

A photon of 550-nm (visible) light has an energy of  3.61×10-19 J. What is its momentum?

Solution

E = 3.61×10-19 J ⟹ p = E /c = 1.20×10-27 kg ·m /s
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J.4 - General Relativity and Cosmology (Aside)

The Principle of Equivalence

It  bothered  Einstein  that  his  theory  of  relativity  applied  only  to  inertial  (or  non-accelerated)  frames.  He  set  out  to  generalize  his  theory.
What he ended up with was a theory of gravity. While pondering his generalized theory he had what he referred to as “the most beautiful idea of
my life” while riding an elevator. He had the sudden realization that gravity and acceleration were one in the same. In an elevator accelerating
upward you feel heavier and when accelerating downward you feel lighter. In a free-fall elevator you would feel weightless.

This idea became what he called the principle of equivalence. Suppose you are in a rocket far from any source of gravity and the rocket is
accelerating with a upward steady acceleration of g. The principle of equivalence says that you cannot distinguish being in this rocket from being
inside a room with a steady and uniform gravity g acting downward.

Interactive Figure - A ball is thrown from inside an accelerating rocket.  K ′ is the accelerated frame of the rocket. K is the inertial 
frame, which is moving at a constant velocity and is initially at rest with respect to the rocket at the instant the ball is released.

Einstein published his principle of equivalence in 1907, but it took him nine more years to complete his general theory. The mathematics needed
for his theory of gravity was quite difficult and when he started he was actually not much of a mathematician, but by the time he completed his
theory  he  was.  In  the  nineteenth  century  mathematicians  had  generalized  Euclidean  geometry  to  describe  curved  spaces.  For  example,  the
surface of a sphere is a curved two dimensional surface and when viewed on the very small scale it  looks like flat plane, Euclidean space. To
complete his theory he had to find a curved four-dimensional theory that, on the small scale, looks like Minkowski’s geometry. Throw a ball and
it moves in a straight line, relative to Einstein’s curved geometry. The straight lines of general relativity are the projectile trajectories.

The Bending of Light

Suppose in  the rocket  example the astronaut  had a  flashlight.  The floor  would still  accelerate  up to  the light.  This  meant  to  Einstein that
light must bend under gravity. In 1919 the astronomer Arthur Eddington set to measure this bending during a solar eclipse. When he reported his
results proving Einstein’s prediction, Einstein went from a well-known figure in the scientific community to one of the most famous people in
the world.

This bending of light has become an important tool in astronomy. It  is known as gravitational lensing and is observed with light bending
around galaxies. Multiple images of the same more distant galaxy can be seen placed around a galaxy.

Black Holes

The equations of general relativity are notoriously difficult to solve but many solutions in cases of symmetry do exist. The first significant
such solution was due to Schwarzschild. To study stars with general relativity he found a solution with spherical symmetry. The solution had a
anomalous result; at some small radius, the solution went haywire. Although this baffled people at first, it eventually was accepted as physically
significant  and  it  became  what  is  now  known  as  a  black  hole.  A  black  hole  is  where  gravity  is  so  strong  that  not  even  light  can  escape.  In
Schwarzschild’s  solution  the  mass  of  a  star  collapses  to  a  point,  a  singularity,  which  is  infinitely  dense.  At  some  finite  distance  from  the
singularity there is the point beyond which nothing, even light can escape. This is called the Schwarzschild radius.

It turns out that we can, essentially by luck, get the correct expression for the Schwarzschild radius by solving for the point with Newtonian
gravity where the escape speed is c. From Physics I, the escape speed from the surface of a planet of mass M and radius R is
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vescape =
2 G M

R

Setting vescape = c and solving for R gives the Schwarzschild radius.

c = vescape =
2 G M

R
⟹ R =

2 G M

c2

Any gravitating body that collapses beyond this point becomes a black hole.

Example J.14 - The Earth or Sun as a Black Hole

(a) If an object the mass of the earth were to collapse to a black hole, what would be its Schwarzschild radius?

Solution

G = 6.673×10-11
N ·m2

kg2
, Mearth = 5.97×1024 kg and c = 3.00×108 m /s

This gives a very small result.

R =
2 G M

c2
=

2 G Mearth

c2
= 8.85 mm

(b) Repeat this with the mass of the sun.

Solution

Msun = 1.99×1030 kg

This  gives  a  realistic  result  for  a  black  hole  because  most  black  holes  are  formed  by  the  gravitational  collapse  of  stars  in  a
supernova, however stars do need to be a bit more massive than the sun for such a full collapse

R =
2 G M

c2
=

2 G Msun

c2
= 2950 m

Cosmology

It  is  quite  audacious  to  mathematically  solve  for  a  universe.  However,  with  general  relativity  we can  find  solutions  describing  the  large-
scale structure of the universe. There are many open questions in astronomy but general relativity is an essential tool for studying them. When
Einstein first tried to apply general relativity to the universe as a whole, he had a significant problem with his solution. He could not model a
static universe with it. He was so troubled by this that he added an extra fudge factor to general relativity, known as the cosmological constant, to
allow  for  static  solutions.  Several  years  later,  the  astronomer  Edwin  Hubble  discovered  the  universe  was  expanding.  Einstein  referred  to  the
introduction of the cosmological constant as “his biggest mistake”; he could have predicted the expanding universe and the big bang but instead
lost confidence in his own beautiful equations.

Gravity Waves

Just as the equations of electromagnetism give rise to solutions describing electromagnetic waves, the equations of general relativity give
solutions  of  gravity  waves.  Although electromagnetic  waves  are  easy  to  both  create  and  detect,  gravity  waves  are  difficult  to  both  create  and
detect. Creating significant gravity waves involves cataclysmic astrophysical events, like colliding black holes. Detecting gravity waves is even
more difficult but gravity waves were first detected in 2016 and that merited the 2017 Physics Nobel prize. What is remarkable about this gravity
wave detection is that it is not merely seeing some small effect. It has now become a new and important tool for studying astrophysics.
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