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K.1 - Planck’s Constant and Black-body Radiation

Black Bodies

At the end of the nineteenth century it looked as if almost all of physics was settled, except for a few loose ends. These loose ends led to
two major revolutions in physics in the twentieth century. The first, of course, was relativity. The second was the quantum physics revolution,
which much more fundamentally altered the world view of physicists. In addition to the nineteenth century progress in electromagnetism that we
have been discussing for most of the semester, there was also tremendous progress in thermodynamics, some of which was covered in Physics I.
When the rules of thermodynamics were applied to the electromagnetic field, some bizarre results calculated. 

Any  hot  object,  meaning  something  at  a  finite  temperature,  radiates  electromagnetic  energy.  Something  near  the  temperature  of  the  sun
radiates energy in and around the visible spectrum. Things around room temperature radiate in the infrared. The spectrum of light a hot object
radiates depends on its temperature and how reflective it is. A black body is an idealized object that is perfectly black, meaning that it reflects no
light. To approximate such an idealization imagine a hollow container with a small hole; any light that enters the hole reflects multiple times and
is  absorbed by the inner  surface.  Most  hot  objects  produce spectra that  are close to the idealized black body spectrum after  accounting for  its
reflectivity.

When the laws of thermodynamics were applied to electromagnetic waves from a hot object, it was calculated that theoretically, it should
radiate away all its energy almost instantaneously. The theory. known as the Rayleigh-Jeans theory, predicted the experimental results well for
small frequencies, but at higher frequencies the theory gave results that approached infinity as frequencies increased. The problem was that in
classical physics there was no limit to the number of internal degrees of freedom in matter and that that led to unlimited energy being radiated.
Each  oscillating  degree  of  freedom  in  matter  would  get  an  equal  share  of  the  total  energy  and  there  were  unlimited  oscillating  degrees  of
freedom at high frequencies. This anomalous result was called, rather dramatically, the ultraviolet catastrophe; since higher frequency radiation
is ultraviolet.

The black body spectrum and the Rayleigh-Jeans anomalous result.

The black body spectrum can be written in terms of the frequency or wavelength. The peak wavelength λpeak varies with the temperature (in
kelvin)  by  the  Wien  displacement  law.  (Note  that  the  Walker  text  discusses  black  body  radiation  in  terms  of  frequency  and  not  wavelength.
Moreover, fpeak ≠ cλpeak but the explanation is too complicated to get into.)



The black body spectrum can be written in terms of the frequency or wavelength. The peak wavelength λpeak varies with the temperature (in
kelvin)  by  the  Wien  displacement  law.  (Note  that  the  Walker  text  discusses  black  body  radiation  in  terms  of  frequency  and  not  wavelength.
Moreover, fpeak ≠ cλpeak but the explanation is too complicated to get into.)

λpeak = (0.00290 m ·K) /T

This shows the apparent colors of the spectra from different temperatures in Kelvin.

By Bhutajata - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=44144928

Example K.1 - Light Bulb Temperatures

Light  bulb temperatures  for  incandescent  or  florescent  bulbs reflect  the actual  temperature of  the hot  filament  or  hot  gas.  For  modern
LED bulbs it is more complicated but the listed temperature represents the best approximation to the black body spectrum that the bulb
produces. What are the peak wavelengths for a “warm white” bulb at 2500 K, a “cool white” bulb at 3800 K and a “daylight” bulb at
5800 K.

Solution
Use the Wien displacement law.

λpeak = (0.00290 m ·K) /T

T = 2500 K ⟹ λmax = 1160 nm

T = 3800 K ⟹ λmax = 763 nm

T = 5800 K ⟹ λmax = 500 nm

Note that with lighting colors people use terms like warm for reddish hues and cold for bluish hues. This usage is reverse from
the Kelvin temperatures.

Example K.2 - Spectra of Stars

The color of stars is based on the temperature of their surface. Find the peak wavelengths for the sun at 5780 K, Betelgeuse at 3500 K,
Polaris (the north star) at 6000 K and Sirius at 10 000 K.

Solution
Again use the Wien displacement law.

λpeak = (0.00290 m ·K) /T

Sun ⟹ T = 5780 K ⟹ λmax = 502 nm

Betelgeuse ⟹ T = 3500 K ⟹ λmax = 829 nm

Polaris ⟹ T = 6000 K ⟹ λmax = 483 nm

Sirius ⟹ T = 10 000 K ⟹ λmax = 290 nm

Planck’s Constant

To find a match for the experimentally observed black-body spectrum, Planck, in 1900, made an assumption that the atoms inside the cavity
were not oscillating at all possible energies but at some frequency the energies were quantized as multiples of the frequency.

En = n h f where n = 0, 1, 2, …

In  this  expression,  f  is  the  frequency,  n  is  a  non-negative  integer  and  h  is  a  new  constant  that  Planck  introduced.  Planck’s  constant  has  the
numerical value, in SI units of

h = 6.63×10-34 J ·s
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By controlling the number of  high frequency degrees of freedom, he was able to high frequency behavior of the radiation spectrum.

Essentially, Planck added a fudge factor to fit the curve. But his fudge factor had physical motivation and it got physicists asking the right
questions. How are matter and radiation quantized?

K.2 - The Photon Hypothesis

The Photoelectric Effect

In 1905 Einstein was working at a Swiss patent office. 1905 is referred to as Einstein’s annus mirabilis, his miracle year. In addition to his
two  revolutionary  papers  on  relativity,  Einstein  had  another  paper  on  Brownian  motion,  where  he  described  the  random  behavior  of  small
particles in a fluid caused by the collisions between the particles and the atoms and molecules; this paper is credited as having ended the debate
on the existence of atoms. His most controversial  paper that  year introduced the idea that  light was quantized; it  was absorbed and emitted in
discrete units which we now call photons.
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When electromagnetic radiation hits the surface of a metal the energy of the light can energize electrons in the metal and they can escape
from the surface. This is known as the photoelectric effect; it is how a photocell or “electric eye” works. To study this we will imagine this plate,
which we will  call  the target  plate  inside a  vacuum tube with another  metal  plate,  the collector  plate.  A variable  voltage is  placed across  the
plates and the current due to the ejected electrons is measured.
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The photoelectric effect uses a simple photocell that can detect light.

Reversing the polarity of the dc source, allows a measurement of the maximum kinetic energy of the ejected electrons Kmax. There is a stopping
potential V0 for this reversed polarity V = -V0, and any voltage magnitude above this would give no current. The ejected electrons need to have
enough energy to make it across the plates. The maximum kinetic energy of the ejected electrons is related to this stopping voltage. 

Kmax = eV0

The observed results of this photoelectric effect experiment included anomalous results.

◼ As the intensity of the incident light increased, the current increased. 

This was expected.

◼ There was no time lag for very dim incident light.

It was expected that if the intensity of the incident light was very low it would take time for electrons to build up enough energy to escape 
the surface. Instead, although very dim light gave very low currents there was no observable time lag. This was not a cumulative effect.

◼ There was an unexplainable frequency dependence. 

The maximum kinetic energy Kmax depended on the metal and on the frequency of the incident light. Moreover, it was totally independent of 
the intensity. For a given metal there was a cutoff frequency f0, below which no electrons were ejected. The work function W0 was the 
minimum energy needed for an electron to escape.

The figure above shows the maximum kinetic energy versus the frequency for different metals. The slope of the graphs for all metals was 
Planck’s constant. When the graphs were extrapolated to negative values, the intercept had the interpretation as the negative work function 
W0 of that metal and the cutoff frequency was the frequency axis intercept f0 = W0 /h.
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The figure above shows the maximum kinetic energy versus the frequency for different metals. The slope of the graphs for all metals was 
Planck’s constant. When the graphs were extrapolated to negative values, the intercept had the interpretation as the negative work function 
W0 of that metal and the cutoff frequency was the frequency axis intercept f0 = W0 /h.

Kmax = h f - W0

When we write expressions like the one above, it makes the resolution of the anomalies seem obvious, in retrospect. But the resolution was
very revolutionary. Einstein said that despite the irrefutable evidence that light was a wave, it also had a particle nature. It is always absorbed or
emitted in discrete packets of energy which we now call photons. The energy of a photon is related to its frequency.

E = h f

Light is absorbed and emitted one photon at a time. The consequences of light being both a wave and a particle were huge and revolutionary.

Example K.3 - The Photoelectric Effect

The work function for calcium is 2.90 eV and for copper is 4.70 eV.

(a) What are the cutoff frequencies and corresponding wavelength for each?

Solution
The constants and conversions needed are.

1 eV = 1.60×10-19 J and h = 6.63×10-34 J ·s

W0 = 2.90 eV = 4.64×10-19 J ⟹ f0 = W0 /h = 7.00×1014 Hz ⟹ λ = c / f0 = 429 nm

W0 = 4.70 eV = 7.52×10-19 J ⟹ f0 = W0 /h = 1.13×1015 Hz ⟹ λ = c / f0 = 264 nm

(b)  For  both  calcium  and  copper,  what  are  the  maximum  kinetic  energies  of  ejected  electrons  from  light  with  a  frequency  of
1.50×1015 Hz?

Solution

Using the frequency of f = 1.50×1015 Hz and W0 for each gives the result.

W0 = 4.64×10-19 J ⟹ Kmax = h f - W0 = 5.31×10-19 J

W0 = 7.52×10-19 J ⟹ Kmax = h f - W0 = 2.43×10-19 J

Example K.4 - Electron-Positron Annihilation

When  an  electron  and  positron  collide  they  annihilate  into  two  high-energy  photons  of  equal  energies,  assuming  the  initial  kinetic
energies are negligible. Give the energy of the photons in joules and electron-volts, eV. What are the wavelength and frequency of the
resulting photons? Where is this on the electromagnetic spectrum?

Solution
The positron has the same mass as the electron

c = 3.00×108 m /s , melectron = 9.11×10-31 kg and h = 6.63×10-34 J ·s

The total energy is then the total rest energy of both.

Etot = 2 melectron c2 = 1.64×10-13 J

The energy in each photon is then half this. 

E = melectron c2 = 8.20×10-12 J

To convert to electron-volts, an eV is e multiplied by a volt V. 

1 eV = e×1 V = 1.60×10-19 C ·V = 1.60×10-19 J ⟹ E = 512 000 eV

To find the frequency we use the expression for the energy of a photon

E = h f ⟹ f = E /h = 4.10×1033 Hz

and we can then find the wavelength.

λ = c / f = 7.32×10-26 m

Comparing these values with the electromagnetic spectrum we see that these are very energetic gamma rays.
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Example K.5 - Photons per Second from a Laser

How many photons per second are emitted by 50-mW He-Ne laser (λ = 632.8 nm). The power is 50 mW; that is the energy per time. 

Solution

The energy of each photon is Ephoton = h f . The total energy divided by the energy of each photon (E Ephoton) is the number of
photons ,  so power is  the energy per time then the power divided by the energy of each photon is  the number of photons per
time.

𝒫 = 0.050 W , λ = 632.8×10-9 m , c = 3.00×108 m /s and h = 6.63×10-34 J ·s

The total energy is then the total rest energy of both.

f = c / λ and Ephoton = h f ⟹ Ephoton = h c / λ = 3.143×10-19 J

We can then find the number of photons per time.

 of photons = E Ephoton ⟹  of photons / time = 𝒫Ephoton = 1.59×1017 photons /s

Compton Scattering

p, λ
p′, λ′

pe

θ

ϕIncident photon

Scattered photon

Outgoing electron

An  important  application  and  verification  of  the  photon  hypothesis  was  Compton  scattering.  A  photon  of  wavelength  λ  bounces  off  an
electron, initially at rest. The photon scatters (bounces off, using Physics I language) and leaves with a new wavelength λ′  at an angle θ from its
initial direction. The electron moves off in a different direction with its own momentum. By conserving energy and momentum and eliminating
the final momentum of the electron, Compton was able to derive the following result that relates the change in the wavelength of the photon to
its scattering angle. The proof is too tedious to include here.

Δλ = λ′ - λ =
h

me c
(1 - cosθ) where

h

me c
= λC = 2.43×10-12 m

λC  defined above is  called the Compton wavelength .  Don’t  confuse it  with the other wavelengths in the formula,  but it  does set  the scale for
Compton scattering. As a wavelength this is somewhere between x-rays and γ-rays.

Example K.6 - Compton Scattering

A  photon  with  an  incident  wavelength  of  0.032 nm  scatters  at  a  55 °  angle  off  a  stationary  electron.  What  is  the  wavelength  of  the
scattered photon? Also, what are the frequency, energy and momentum of the scattered photon?

Solution

θ = 55 °, λ = 0.032×10-9 m and λC = 2.46×10-12 m

Given the information above we can find the wavelength of the scattered photon.

λ′ - λ =
h

me c
(1 - cosθ) ⟹ λ′ = λ +

h

me c
(1 - cosθ) = λ + λC (1 - cosθ) = 3.58×10-11 m

To find the frequency f ′, energy E′ and the momentum p′ of the scattered photon, we need the constants c and h..

c = 3.00×108 m /s and h = 6.63×10-34 J ·s

f ′ = c / λ′ = 8.36×1018 Hz

E′ = h f ′ = 5.44×10-15 J
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p′ = E′ /c = 1.85×10-23 kg ·m /s

Note that combining the formulas above, and dropping the primes, we get an expression for the momentum of a photon. We will
see this expression in the next section but used more generally.

p = E /c = h f /c = h / λ

K.3 - Wave Mechanics

de Broglie Wavelength

In 1924 Louis de Broglie (pronounced “de broy”) was a graduate student working on his PhD thesis. In his thesis he introduced the notion
of matter waves. We saw in the last section that the momentum of a photon and its wavelength were related by p = h / λ. de Broglie reasoned that
if  waves  have  a  particle  nature,  as  Einstein’s  photon  hypothesis  showed,  then  all  particles  should  have  a  wave  nature.  We  will  discuss  the
deBroglie wavelength again when we cover the Bohr atom. de Broglie was able to interpret the Bohr atom in terms of standing matter waves.

λ = h / p

The  timeline  here  is  of  interest.  Einstein’s  photon  hypothesis  was  in  1905.  Bohr  introduced  his  model  of  the  atom  in  1911.  After  de
Broglie’s 1924 paper things rapidly fell into place. If there are matter waves then what wave equation do they satisfy. A year later Schrodinger
built on de Broglie’s wave hypothesis and found the wave equation that matter waves satisfied. That was the birth of modern quantum mechan-
ics. Between de Broglie and Schrodinger, Heisenberg published an alternative version of quantum mechanics that proved to be equivalent to the
Schrodinger approach.

We now have seen that waves have a particle nature and particles have a wave nature. This is often described as wave-particle duality. Look
at interference of light. We saw a continuous intensity pattern when light shines through two-slits or a single slit. But what does that continuous
pattern  have  to  do  with  photons.  Light  is  emitted  and absorbed as  a  particle  but  travels  between to  positions  more  like  a  wave.  The  intensity
pattern is proportional to the probability of a photon landing in a particular position. We cannot predict  the outcome of an experiment but the
probabilities of the outcomes. What about matter waves? Electrons will also show the same interference or diffraction pattern when shot through
two slits or a single slit. We cannot predict where it will land just the probabilities of it landing in different positions.

An electron microscope is based on this wave property of electrons. With visual wavelengths of light one cannot make out details that are
smaller  than the  wavelength  of  the  light,  and for  visible  light  that  is,  as  we have seen,  on the  order  of  hundreds  of  nanometers  or  less  than a
micron = μm.  For  example,  the  corona  virus  has  a  diameter  of,  on  average  125 nm = 0.125 μm,  so  it  is  not  something  you  can  observe  with
visible light. Electrons can, with sufficient momentum, have much smaller wavelengths and thus can used to view objects much smaller. Often
one sees colors added to electron microscope images but these are added after the fact. There is no such thing as color on those scales.

Example K.7 - Accelerating Voltage for an Electron Microscope 

To design an electron microscope with a wavelength of around 0.05 nm, what voltage is needed to accelerate electrons to the necessary
speed? Assume this is nonrelativistic. We will see this is the case after the fact.

Solution
First the given information

λ = 0.05×10-9 m

 and necessary constants.

e = 1.60×10-19 C , me = 9.11×1031 kg , c = 3.00×108 m /s and h = 6.63×10-34 J ·s

Find the momentum, then velocity and then the kinetic energy.

p = h / λ = 1.33×10-23 kg ·m /s ⟹ v = p /me = 1.46×107 m /s ⟹ K =
1

2
me v2 = 9.65×10-17 J

To find the voltage conservation of energy gives K = e V

V = K /e = 603 V

The speed is about 120th the speed of light which justifies us to use nonrelativistic formulas.

The Uncertainty Principle

Suppose  you  try  to  pinpoint  the  position  of  some  particle  using  light  or  some  other  particle  with  a  wavelength.  To  view  it  with  higher
resolution you must use a smaller wavelength. However the smaller the wavelength used, the more momentum is required. This gives a kick to
the  particle  you  are  trying  to  observe.  The  act  of  measuring  something  changes  what  you  are  trying  to  measure.  This  is  a  very  fundamental
limitation on measurement in quantum mechanics is called the uncertainty principle. 
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Suppose  you  try  to  pinpoint  the  position  of  some  particle  using  light  or  some  other  particle  with  a  wavelength.  To  view  it  with  higher
resolution you must use a smaller wavelength. However the smaller the wavelength used, the more momentum is required. This gives a kick to
the  particle  you  are  trying  to  observe.  The  act  of  measuring  something  changes  what  you  are  trying  to  measure.  This  is  a  very  fundamental
limitation on measurement in quantum mechanics is called the uncertainty principle. 

No measurement is exact, there is always uncertainty. Label the uncertainty in the position, more precisely the x-component of the position
as Δx. Similarly label the uncertainty in the x-component of momentum as Δpx.

Δx Δpx ≥
h

4 π

This illustrates that quantum mechanics puts a fundamental limitation on our ability to simultaneously measure position and momentum. Here
we  introduced  the  uncertainty  principle  as  a  limitation  on  measurement.  But  often  discussions  on  the  uncertainty  principle  overstate  this  and
seem to imply that measurement causes the uncertainty principle. The fact is that these quantities are not clearly defined in quantum mechanics.
Position  and  momentum  are  inherently  fuzzy  notions  and  this  fuzziness  puts  a  limit  on  the  measurements.  Uncertainty,  as  mentioned  here,
sounds vaguely defined; it is not. We can precisely define what we mean by uncertainties.

It should be pointed out that the expression for the uncertainty principle stated above is written incorrectly in the Walker text. They write
the  right  hand side  as  h  divided  by  2 π  instead  of  4 π.  Some books  do  write  it  as  Δx Δpx ≳ h / (2 π)  where  the  ≳  is  used  to  mean that  gives  an
estimate of the uncertainty but with the ≥ the book is wrong.

This seems to imply that all of the mechanics you learned in Physics I is wrong; it is not. For macroscopic things that we study in mechanics
the uncertainty principle is irrelevant, because the theoretically minimum uncertainty is much smaller than we would ever worry about. Suppose
you have a thrown baseball. You can take an accurate video of the baseball and then plot out its position and velocity as functions of time. You
know where it is and how fast it is moving. However, to see it light must be scattering off it and with each scattering it very slightly alters its
course. But this effect is too small to be of interest.

Example K.8 - A Baseball

A baseball with a mass of 0.145 kg moves with a velocity 45 m /s. If we take Δx to be some length in the middle of the visible spectrum,
say 550 nm, then what is the minimum uncertainty in its momentum and velocity? Calculate the fraction Δv /v to show how small this
effect is.

Solution
List the constants and given information.

m = 0.145 kg , v = 45 m /s , Δx = 550×10-9 m and h = 6.63×10-34 J ·s

The minimum uncertainty is when the inequality becomes equal.

min Δp =
h

4 π Δx
= 9.59×10-29 kg ·m /s

and using p = m v we can find the uncertainty in the velocity

min Δv =
min Δp

m
= 6.62×10-22 kg ·m /s

For the fraction we get

min Δv

v
= 1.47×10-29

As we expected, this is tiny.

Example K.9 - An Electron at Atomic Scales

Now we will apply the uncertainty principle to an electron where Δx is the typical size of an atom 0.10 nm.

(a) What is its minimum uncertainty in momentum and velocity?

Solution
We are given

Δx = 0.10×10-9 m , me = 9.11×1031 kg and h = 6.63×10-34 J ·s
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min Δp =
h

4 π Δx
= 5.28×10-25 kg ·m /s

min Δv =
min Δp

m
= 579 000 m /s

(b)  Since  its  velocity  will  average  to  zero,  take  its  minimum  uncertainty  in  velocity  to  be  its  average  speed  and  calculate  its  kinetic
energy, in eV?

Solution

Now we take vave = min Δv and find K = 1
2

m v2

K =
1

2
m v2 = 1.52×10-19 J×

1 eV

1.60×10-19 J
= 0.955 eV
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