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L.1 - Early Models of the Atom

Dalton, Thomson and Rutherford

Although speculation about atoms goes back to the Greek philosophers, the notion of atoms was not a scientifically significant notion until
the nineteenth century. Dalton was a chemist who early in the century introduced the idea of the atom to explain the recombination behavior of
compounds in chemistry.  Atoms are basic  building blocks of  matter  that  have different  masses and sizes and can recombine to form different
compounds.  Mass  is  conserved  and  the  masses  of  compounds  correspond  to  summing  all  the  masses  in  the  constituent  atoms.  This  was  very
much on the mark for the purposes of chemistry.

Early in the nineteenth centuries physicists were thinking more of continuous ideas of matter and not in terms of discrete fundamental units.
Progress in thermodynamics and in relating macroscopic thermodynamic quantities to microscopic laws led physicist to start thinking seriously
about atoms. J.J. Thomson discovered the electron in 1897 when studying cathode rays, beams emanating from cathodes, or negative terminals.
He found the charge to mass ratio of the particles in the cathode rays and saw that different materials produced identical particles in cathode rays.

Thomson tried to model how different atoms could possess the same electrons. He modeled atoms as continuous blobs of positive charge
with negatively charged electrons distributed throughout the positively charged background. This was given the ludicrous nickname of the “plum
pudding model.”

Rutherford performed an experiment to probe Thomson’s atoms by shooting alpha particles at thin gold foil.  Alpha particles are particles
emitted from some radioactive materials.  We now know they are the nucleus of  helium atoms.  When these heavy particles  were shot  through
gold foil, Rutherford expected them to pass through only slightly deflected or slowed. What he observed was that most were undeflected but a
few  were  scattered  at  large  angles  and  some  were  scattered  backward.  Rutherford  was  shocked  at  his  result;  he  likened  it  to  tissue  paper
reflecting a shell. He correctly interpreted his results as atoms having a very dense core, a nucleus, instead of being uniformly dense. With this
he  discovered  the  atomic  nucleus.  It  is  ironic  that  he  discovered  the  nucleus  using  nuclei,  alpha  particles,  but  alpha  particles  had  not  been
identified as nuclei at the time. 

Rutherford then modeled the atom as very dense cores, nuclei,  surrounded by a very diffuse density of electrons orbiting, somehow. This
had an obvious theoretical problem. The electrons would have to be moving to prevent being pulled into the positively charged nuclei, so if they
orbited, then the accelerating charges wold radiate energy and collapse into the nucleus. Rutherford’s atoms were unstable.

Atomic Spectra and the Hydrogen Spectrum

Hot  materials  produce  a  continuous  spectrum  that  approximates  the  idealized  black  body  spectrum.  Individual  atoms  produce  a  very
different  pattern.  When  the  spectrum  of  a  hot  cloud  of  diffuse  atoms  is  viewed  there  is  a  discrete  pattern  of  lines,  the  atomic  spectra.  The
characteristic pattern of lines identifies the atoms.

The atomic spectrum of hydrogen were observed to have a characteristic pattern; the inverse wavelength 1 / λ satisfies

1

λ
= R

1

n′2
-

1

n2
where n′ = 1, 2, 3, … and n = n′ + 1, n′ + 2, …

where R is the Rydberg constant.

R = 1.097×107 m-1

The different values for n′ = 2 are in the visible spectrum and are called the Balmer series. The part of the spectrum corresponding to n′ = 3 are
in the infrared part of the spectrum and is known as the Paschen series and the n′ = 1 lines are the Lyman series in ultraviolet.
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Example L.1 - Minimum and Maximum Wavelengths in a Series

What are the minimum and maximum wavelengths in the Lyman, Balmer and Paschen Series

Solution
We need the value of the Rydberg constant.

R = 1.097×107 m-1

Because  of  the  left-hand  side  of  the  Rydberg  formula  is  1 / λ,  the  larger  the  difference  in  the  n  values,  the  smaller  the
wavelength. 

For the Lyman series n′ = 1 so the largest wavelength is n = 2

1

λmax
= R

1

12
-

1

22
⟹ λmax = 1.21×10-7 m = 121 nm

As n gets larger, λ gets smaller. There is not precisely a smallest wavelength in the series but there is a lower limit on the values.
As n → ∞ then 1 /n → 0 and we refer to this lower limit as the smallest.
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λmin
= R

1

12
- 0 ⟹ λmin = 9.12×10-8 m = 91.2 nm

For the Balmer series with n′ = 2 so the largest wavelength is n = 3 

1

λmax
= R

1

22
-

1

32
⟹ λmax = 6.56×10-7 m = 656 nm

and the smallest is the limit as n → ∞ as with the Lyman series

1

λmin
= R

1

22
- 0 ⟹ λmin = 3.64×10-7 m = 364 nm

For the Pashen series with n′ = 3 so the largest wavelength is n = 4 

1

λmax
= R

1

32
-

1

42
⟹ λmax = 1.87×10-6 m = 1880 nm

and the smallest is the limit as n → ∞ as with the Lyman series

1

λmin
= R

1

32
- 0 ⟹ λmin = 8.20×10-7 m = 820 nm

The Bohr Atom

The  frequencies  of  sound  that  come  from  a  musical  instrument  correspond  to  internal  frequencies  of  vibration  in  the  instrument;  a  note
produced by a guitar or piano corresponds to a frequency of vibration of a string. It was not possible to understand the spectrum of light from an
atom in a similar way. Bohr considered how to apply some notion of quantization to an atom in a way that was consistent with Einstein’s photon
hypothesis, that could explain the atomic spectra and remove the instability of the Rutherford atom.

What Bohr got correct was: Atoms have certain discrete energy levels or states that are, for some yet unknown reason, stable. The spectrum
of radiation produced by atoms corresponds to photons whose energy is equal to the energy difference between the energy levels.  Suppose an
atom in a state with energy Ei transitions to a lower energy level Ef  then a photon is emitted with the energy

Ephoton = h f = Ei - Ef .

Quantization of Angular Momentum
Bohr tried to find some rule to describe the energy levels. Planck’s constant has units of angular momentum. This likely motivated Bohr to try a
rule  that  involved  the  quantization  of  angular  momentum.  Bohr  focused  on  a  model,  analogous  to  the  solar  system,  where  electrons  move  in
circular  orbits.  He  applied  this  idea  to  the  hydrogen  atom and  other  one-electron  atoms,  like  ionized  helium  He+  with  atomic  number  Z = 2,
twice ionized lithium Li++  with atomic number Z = 3, etc. The angular momentum of an electron in a circular orbit of radius r  with speed v  is
L = r me v.  He then assert his quantization rule that this angular momentum was quantized in integer multiples of Planck’s constant divided by
2 π. The nth state satisfies
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Ln = rn me vn = n
h

2 π
where n = 1, 2, 3, …

Newton’s Second Law
For a circular orbit we can apply Newton’s second law to relate the radius and speed. The acceleration is centripetal (or radial) and has the value,
as you saw in Physics I, of ac = v2 r.  The force of a nucleus with positive charge Ze on the electron with charge -e is toward the center with

magnitude F = k Ze2 r2, where r is the distance between the two, the radius of the orbit. Now apply the second law

F = me ac ⟹ k
Ze2

r2
= me

v2

r
⟹ k

Ze2

r
= me v2

Radius of the nth Level Orbit
The angular momentum quantization condition allows us to write the speed in terms of the radius and n.

Ln = rn me vn = n
h

2 π
⟹ vn = n

h

2πmern

Insert this into our expression from the second law for the nth level gives

k
Ze2

rn
= me vn2 ⟹ k

Ze2

rn
= me

n h

2πmern

2

⟹ rn =
h2

4π2mekZe2
n2

Define the Bohr radius a0 as the radius of the ground state with n = 1, for hydrogen with Z = 1.

rn = a0
n2

Z
where a0 =

h2

4π2meke2
= 5.29×10-11 m

This sets the scale for the size of atoms.
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Energy of the nth Level

We now need a formula for the energy of a circular orbit  in terms of the radius.  The kinetic energy is K = 1
2
me v2  and the potential  energy is

U = kq1 q2 /r = -kZe2 r.

E = K + U =
1

2
me v2 - k

Ze2

r
Now use the formula from the second law that relates speed to radius.

k
Ze2

r
= me v2 ⟹ E =

1

2
me v2 - k

Ze2

r
=

1

2
k
Ze2

r
- k

Ze2
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= -
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k
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Using the radius of the nth level we get its energy.

En = -
2π2mek2Z2e4

h2 n2
= -E0

Z2

n2
where E0 =

2π2mek2 e4

h2
= 2.18×10-18 J = 13.6 eV

E0 is the ionization energy for hydrogen, the energy needed to remove the electron from the ground state, the n = 1 state.

The Spectrum of Hydrogen
Recall  Bohr’s  assumption that  when an electron transitions between two energy levels,  the photon acquires the energy difference between the
levels, Ephoton = h f = Ei - Ef .  This gives the Rydberg spectrum. In a transition between En and En′we have

hc

λ
= h f = En - En′ = -E0

1

n2
-

1

n′2
⟹

1

λ
=
E0

hc

1

n′2
-

1

n2
⟹ R =

E0

hc

Lyman Series

Balmer Series

Paschen Series
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er

gy

E1=-E0

E2=-E0/22

E3=-E0/32
E4=-E0/42

0

Summary of the Bohr Atom
◼ The Right Part

◼ Atoms have discrete energy levels.

◼ When an electron undergoes a transition from a higher energy level to a lower one, it emits a photon which has the energy difference 
between the levels.

◼ The Wrong Part

◼ Electrons do not move in a circular orbit or in any precisely defined path. That violates the uncertainty principle.

◼ Although angular momentum is quantized, it is quantized in a quite different way. Bohr atoms would have huge angular momenta and 
would then also have huge magnetic moments.

◼ Bohr had only one quantum number n. It turns out there are four.

◼ The Bohr model could not describe multi-electron atoms

◼ The Lucky Part

◼ Although, in retrospect, his reasoning was not correct, he happened to get the correct energy levels for hydrogen and other single-
electron atoms.

◼ Because he had the correct energy levels, he was able to correctly describe the spectrum of hydrogen and other single electron atoms.

de Broglie Standing Waves
When de Broglie introduced his matter wave hypothesis, he referred to the Bohr atom. Bohr’s quantization condition could be interpreted as a
standing wave of an electron with wavelength λ = h / p. There is constructive interference of n full wavelengths around one circumference, 2πr

2πr = nλ = n
h

p
= n

h

me v
⟹ rmev = n

h

2π

Using λ = h / p and p = me v we then get Bohr’s quantization condition.
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de Broglie’s interpretation of the Bohr quantization condition as a standing wave (constructive interference) of matter waves

The  Bohr  atom with  de  Broglie’s  matter  wave  interpretation  is  no  less  wrong.  However,  de  Broglie  gave  an  important  insight  that  led  to  the
development of the proper wave equation needed for understanding atoms.

Example L.2 - Twice Ionized Lithium

Twice ionized lithium Li++ is a one electron atom with a charge of +3 e in the nucleus. 

(a) How much energy (in eV) does it take to remove the one electron left?

Solution
We just need to use Z = 3 and the formulas given.

En = -E0
Z2

n2
where E0 = 13.6 eV

The ionization energy is then -E1 with Z = 3.

-E1 = +E0 32 = 122 eV

(b) In twice ionized lithium, what is the energy (in joules) of the photon emitted when the electron undergoes a transition from the fifth
to the second energy levels? Also what are the frequency and wavelength of the photon?

Solution
Here we will use the same energy formula with 

En = -E0
Z2

n2
where E0 = 2.18×10-18 J

The energy of the photon is

E = Ei - Ef = E5 - E2 = -E0 32
1

52
-

1

22
= 4.12×10-18 J

To find the frequency use E = h f

h = 6.63×10-34 J ·s ⟹ f = E /h = 6.22×1015 Hz

and f λ = c gives the wavelength.

c = 3.00×108 m /s ⟹ λ = c / f = 4.82×10-8 m = 48.2 nm

Example L.3 - The n = 5 Bohr Orbit

For the n = 5 Bohr orbit for hydrogen, what is the radius, speed and de Broglie wavelength of the electron?

Solution
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rn = a0
n2

Z
where a0 =

h2

4π2meke2
= 5.29×10-11 m

Here we have Z = 1 and n = 5.

rn = a0
52

1
= 1.32×10-9 m

To find the speed we use Bohr’s quantization condition.

Ln = rn me vn = n
h

2 π
⟹ vn = n

h

2 π rn me
= 4.28×105 m /s

There are many inter-related expressions and that means there are many ways to calculate things. The de Broglie wavelength is
most simply found using 2πr = nλ.

2 π rn = n λn ⟹ λn =
2 π rn

n
= 1.66×10-9 m

L.2 - The Quantum Theory of the Hydrogen Atom

Quantum Mechanics and the Schrodinger Equation

If it were not for Einstein, relativity would have emerged gradually over a period of many years, with different physicists adding their own
small  contributions.  In the end,  after  a  long process  relativity would have emerged in essentially  its  modern form but  the process  would have
probably been quite laborious. Quantum mechanics followed that laborious route. Over a period of several years after de Broglie’s key insight,
many  physicists  working  from  several  different  angles  put  together  what  became  our  modern  theory  of  quantum  mechanics.  The  two  most
notable  contributors  to  this  were  Werner  Heisenberg  with  what  was  known  at  the  time  as  matrix  mechanics  and  Erwin  Schrodinger  with  his
wave  mechanics  but  neither  of  them  had  complete  theories.  Schrodinger,  for  instance,  had  his  wave  function  but  really  didn’t  understand  its
probability interpretation at first; that probability interpretation came for Max Born. 

The Schrodinger wave function is  a complex-number valued that  when squared,  in the appropriate complex way, gives the probability of
particle being at some position. The atom is no longer viewed as electrons in orbits but instead electrons forming probability clouds.

The Quantum Numbers

Instead of the one quantum number n in the Bohr atom the quantum mechanical hydrogen atom has four. To label an electron state one must
give four numbers: n, ℓ, mℓ and ms. It turns out that the hydrogen energy only depends on the principal quantum number n.

The Principal Quantum Number - n
The energy only depends on the principal quantum number n which has positive integer values.

n = 1, 2, 3, …

The energy of the nth state is the came as with the Bohr atom.

En = -
2π2mek2Z2e4

h2 n2
= -E0

Z2

n2
where E0 =

2π2mek2 e4

h2
= 2.18×10-18 J = 13.6 eV

The Orbital Angular Momentum Quantum Number - ℓ
Unlike the Bohr atom, the orbital angular momentum has nothing to do with n. There is a different quantum numbers ℓ that describes the angular
momentum. The values of ℓ are:

ℓ = 0, 1, …, n - 1

It follows from some mathematics that the magnitude of the orbital angular momentum is

L = ℓ(ℓ + 1)
h

2π
.

We would expect  that  the energy of  the quantum states  would depend on this  quantum number ℓ.  It  turns out  that  it  is  a  unique feature of  an
inverse square law force that the energy is independent of ℓ. 
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The Magnetic Quantum Number - mℓ

It turns out that this magnetic quantum number is related to Lz, the z-component of the angular momentum L.

Lz = mℓ
h

2π
The possible values of the magnetic quantum number are.

mℓ = -ℓ, -ℓ + 1, …, -2, -1, 0, 1, 2, …, ℓ - 1, ℓ

It follows that there are 2 ℓ + 1 different mℓ for each ℓ.

The Spin Quantum Number - ms

In addition to the orbital angular momentum of the electrons, there is also electron spin. The magnitude of the spin angular momentum happens
to be

S =
1

2

1

2
+ 1

h

2π
.

This spin quantum number is related to Sz, the z-component of the spin angular momentum S.

Sz = ms
h

2π
The possible values of the spin quantum number are.

ms = ±
1

2
It follows that there are 2 different ms states for each set of the other three quantum numbers.

Any quantum state can be labeled by these four numbers: (n, ℓ, mℓ, ms)

Example L.4 - Counting States

How many different quantum states are there for n = 1, for n = 2 and for n = 3.

Solution
For  n = 1  we  only  have  ℓ = 0,  and  then  just  mℓ = 0.  So  there  are  only  two  states  for  the  two  ms  values.  Labeling  all  the
(n, ℓ, mℓ, ms) gives:

1, 0, 0, +
1

2
and 1, 0, 0, -

1

2

For n = 2 we only have ℓ = 0, and then just mℓ = 0 and ℓ = 1 with three different mℓ  values for each. Then for each of the other
three sets of quantum numbers there are two spin states, two ms values. Listing all the (n, ℓ, mℓ, ms) values:

2, 0, 0, ±
1

2
,

2, 1, 1, ±
1

2
, 2, 1, 0, ±

1

2
, 2, 1, -1, ±

1

2

So there are a total of 8 states.

For  n = 3 we only  have ℓ = 0,  and then just  mℓ = 0,  ℓ = 1 with  three  different  mℓ  values  for  each and ℓ = 2 has  five  mℓ  values.
Listing all the (n, ℓ, mℓ, ms) values:

3, 0, 0, ±
1

2
,

3, 1, 1, ±
1

2
, 3, 1, 0, ±

1

2
, 3, 1, -1, ±

1

2
,

3, 2, 2, ±
1

2
, 3, 2, 1, ±

1

2
, 3, 2, 0, ±

1

2
, 3, 2, -1, ±

1

2
, 3, 2, -2, ±

1

2

So there are a total of 18 states.
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The Electron Probability Clouds

Below is  a  representation  of  the  probability  cloud  for  the  hydrogen  ground  state  on  the  left  and  the  3s  state  on  the  right.  Black  denotes  zero
probabliity.

The probability densities for all states of hydrogen can be seem in the interactive graphic below.

Interactive Figure - Probability densities for all states of the hydrogen atom. (reference)
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L.3 - The Periodic Table and Multielectron Atoms

Spectroscopic Notation

We have the  same four  quantum numbers  for  multielectron atoms.   The number  of  states  and thus  the  number  of  possible  electrons  in  a
given angular momentum state is (2 ℓ + 1)×2 counting the possible mℓ  values and the two ms  values. There is a standard spectroscopic notation
we use to label quantum state. Spectroscopic notation uses a letter for the ℓ values.

ℓ 0 1 2 3 4
letter s p d f g

 of electrons in state 2 6 10 14 18

We then write an n = 3, ℓ = 1 state as 3p. We then use a superscript to represent the number of electrons in a state. If an atom has 2 electrons in
this 3p state we write 3p2.

The Pauli Principle

In  classical  physics  and  in  quantum  physics,  systems  tend  toward  their  lowest  energy  state.  For  atoms  this  means  the  ground  state.  As
temperatures increase a larger fraction of atoms would be excited above their ground state, but at temperatures around room temperature only a
small fraction would be excited. That means that in a multielectron atom almost all electrons would fall to the 1s  state. This does not happen.
Electrons, and all spin half particles including protons and neutrons, satisfy the Pauli principle. This means that no two electrons can be in the
same quantum state. This has important consequences; it is how the periodic table results from quantum mechanics.

The Periodic Table

The order of the states in terms of increasing energy is by the rule, motivated by some quantum approximations, is that the lower the value
of n + ℓ has lower energy and for states with the same n + ℓ values, the ones with lowest n are lower in energy. 

This  gives  the  order  of  the  states:  1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4 d, 5p, 6s, 4 f , 5 d, 6p, 7s, 5 f , 6 d, 7p, 8s.  Let  us  arrange  these  in  a
table.

Arranging all the elements in this structure gives the usual periodic table.
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H
1

He
2

Li
3

Be
4

B
5

C
6

N
7

O
8

F
9

Ne
10

Na
11

Mg
12

Al
13

Si
14

P
15

S
16

Cl
17

Ar
18

K
19

Ca
20

Sc
21

Ti
22

V
23

Cr
24

Mn
25

Fe
26

Co
27

Ni
28

Cu
29

Zn
30

Ga
31

Ge
32

As
33

Se
34

Br
35

Kr
36

Rb
37

Sr
38

Y
39

Zr
40

Nb
41

Mo
42

Tc
43

Ru
44

Rh
45

Pd
46

Ag
47

Cd
48

In
49

Sn
50

Sb
51

Te
52

I
53

Xe
54

Cs
55

Ba
56

La
57

Ce
58

Pr
59

Nd
60

Pm
61

Sm
62

Eu
63

Gd
64

Tb
65

Dy
66

Ho
67

Er
68

Tm
69

Yb
70

Lu
71

Hf
72

Ta
73

W
74

Re
75

Os
76

Ir
77

Pt
78

Au
79

Hg
80

Tl
81

Pb
82

Bi
83

Po
84

At
85

Rn
86

Fr
87

Ra
88

Ac
89

Th
90

Pa
91

U
92

Np
93

Pu
94

Am
95

Cm
96

Bk
97

Cf
98

Es
99

Fm
100

Md
101

No
102

Lr
103

Rf
104

Db
105

Sg
106

Bh
107

Hs
108

Mt
109

Ds
110

Rg
111

Cn
112

Nh
113

Fl
114

Mc
115

Lv
116

Ts
117

Og
118

The Periodic Table
of the Elements

Interactive Figure - The Periodic Table - Mouseover gives information about each element.

Electronic Configurations

The electronic configuration of an atom is a listing of (n, ℓ) states with the number of electrons in each state. Hydrogen has one electron in a
1s state so we write its electron configuration as 1s1. For helium we have 2 electrons in the 1s state so we have 1s2. For lithium we have the two
previous electrons with the third electron in the 2s state, so its configuration is 1s2 2s1.

Example L.5 - Electronic Configurations

(a) What is the electronic configuration of carbon, with atomic number Z = 6?

Solution
Just start writing out the states in order with the maximum number of electrons listed until you get more than 6 electrons, then
partially populate the highest state.

1s2 2s2 2p2

(b) What is the electronic configuration of sodium, with atomic number Z = 11?

Solution
Do the same thing here. After the 2p state is fully populated there is one electron left for the 3s state.

1s2 2s2 2p6 3s1

(c) What is the electronic configuration of chlorine, with atomic number Z = 17?

Solution
Do the same thing here. Here the 3p state is one electron short of being fully populated.

1s2 2s2 2p6 3s2 3p5
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