PHYS 2326 - Dr. Honan - Test 1 - A

Possibly Useful Information: $k=9.0 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2} \quad \varepsilon 0=8.85 \times 10^{-12} \mathrm{C}^{2} /\left(\mathrm{N} \cdot \mathrm{m}^{2}\right) \quad e=1.60 \times 10^{-19} \mathrm{C}$ $m_{\text {electron }}=9.11 \times 10^{-31} \mathrm{~kg} \quad m_{\text {proton }}=1.67 \times 10^{-27} \mathrm{~kg} \quad \mathrm{M}=10^{6} \quad \mathrm{k}=10^{3} \quad \mathrm{c}=10^{-2} \quad \mathrm{~m}=10^{-3} \quad \mu=10^{-6} \quad \mathrm{n}=10^{-9}$

Problem_1 Multiple Choice - The diagram shows two point charges. Q_{L} and Q_{R} are the charges on the left and right respectively. (3 points each)
\qquad [i] What is the sign of charge Q_{L} ?
(a) positive (b) negative (c) zero (d) cannot be determined
\qquad [ii] What is sign of the total net charge $\left(Q_{\mathrm{L}}+Q_{\mathrm{R}}\right)$?
(a) positive (b) negative
(c) zero
(d) cannot be determined
[iii] Which point A or B is at higher electric potential?
(a) A
(b) B
(c) both are the same
(d) cannot be determined

Problem 2

\qquad
(a) A ring with a 15 cm radius and with a uniform charge of $20 \mu \mathrm{C}$ is in the $y z$-plane with the origin at its center. What is the force on a $-3 \mu \mathrm{C}$ charge on the x-axis at $x=5 \mathrm{~cm}$? (7 points)
(b) How many electrons must be removed from a conducting sphere with a 3 cm radius to make the electric field at its surface $6000 \mathrm{~V} / \mathrm{m}$? (6 points)
(c) Two electrons separated by $2 \times 10^{-10} \mathrm{~m}$ are released from rest. What is the speed of each electron when they are a large distance apart. (Both electrons will have the same speed.) (6 points)

Page 2 of 3

Problem 3 A charge $-Q$ is at the origin and a $2 Q$ charge is at $(a, 0)$.
(a) What is the electric field at $(0, b)$? (6 points)
(b) Where along the x-axis is the electric potential zero? Give the coordinates of the position. (7 points)
(c) How much work does it take to move a charge q from infinity to ($0, b$)? (6 points)

Problem 4 Consider an electric field of $\vec{E}=\langle 4,-6,9\rangle$ N/C. (6 points each)
(a) What is the flux through a $3 \mathrm{~cm} \times 3 \mathrm{~cm}$ square in the $y z$-plane?
(b) What is the potential difference when moving from $(-4 \mathrm{~m}, 0,3 \mathrm{~m})$ to the origin?
(c) What is the force on an electron at the origin?

Problem 5 A thin-shelled hollow sphere with a radius R has a uniform charge q. At the center is point charge Q. What are the electric field and potential as functions of position? Include answers for $r<R$ and $r>R$? (7 points)

Problem 6 A long hollow insulating cylinder has an inside radius a, outside radius b and a uniform charge density ρ. What is the electric field a distance r from the central axis? (Give answers for $r<a, a<r<b$ and $r>b$.) (7 points)

Problem 7 A thin rod runs along the x-axis from $x=-L / 2$ to $L / 2$. The rod is charged with a varying linear charge density $\lambda(x)$. What is potential at (x_{0}, y_{0})? Leave your answer in the form of a well-defined definite integral. DO NOT INTEGRATE. (7 points)

Problem 8 A $7 \mu \mathrm{C}$ charge sits at the center of a hollow conducting sphere with concentric spherical surfaces with 3 cm and 5 cm radii. The conductor is given a net charge of $-4 \mu \mathrm{C}$.
(a) What is the electric field at $r=2 \mathrm{~cm}, r=4 \mathrm{~cm}$ and $r=6 \mathrm{~cm}$? (7 points)
(b) Given the charge configuration in part (a), what is the potential at $r=4 \mathrm{~cm}$ and 6 cm ? Take the potential to be 0 at infinity. (7 points)

