PHYS 2326 - Dr. Honan - Test 1 - B

Possibly Useful Information: $k_{\mathrm{e}}=9.0 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2} \quad \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} /\left(\mathrm{N} \cdot \mathrm{m}^{2}\right) \quad e=1.60 \times 10^{-19} \mathrm{C}$
$m_{\text {electron }}=9.11 \times 10^{-31} \mathrm{~kg} \quad m_{\text {proton }}=1.67 \times 10^{-27} \mathrm{~kg}$
Problem 1 Consider an electric field of $\langle 2,-3,5\rangle$ N/C. (6 points each)
(a) What is the flux through the hemisphere $x^{2}+y^{2}+z^{2}=(6 \mathrm{~cm})^{2}, z>0$. This has a 6 cm radius and sits above the $x y$-plane with its center at the origin?
(b) What is the potential difference when a particle moves from $(3 \mathrm{~m}, 0,-4 \mathrm{~m})$ to the origin?

Problem 2 A long hollow thin-shelled insulating cylinder has a radius R and a uniform surface charge density σ. At the center is an infinite line of charge with linear charge density λ. What is the electric field a distance r from the central axis? (Give answers for $r<R$ and $r>R$.) (8 points)

Problem 3

(a) A uniform ring of charge Q and radius R is in the $y z$-plane with the origin at its center. How much work is required to move a charge q along the x-axis from $x=d$ to the origin? (6 points)
(b) How many electrons must be removed from a conducting sphere with a 5 cm radius to make the electric field at its surface $5000 \mathrm{~V} / \mathrm{m}$? (6 points)

Page 2 of 3

Name

Problem 4 A $-9 \mu \mathrm{C}$ charge is at the origin and a $6 \mu \mathrm{C}$ charge is at $(-3 \mathrm{~m}, 2 \mathrm{~m}, 1 \mathrm{~m})$.
(a) What is the electric field at $(0,-3 \mathrm{~m}, 0)$? (6 points)
(b) How much work is required to move a $-8 \mu \mathrm{C}$ charge from ∞ to $(0,-3 \mathrm{~m}, 0)$? (7 points)

Problem 5 The is a voltage of 50 V between a pair of conducting plates. If an electron is released from rest from the negative plate then what is its speed when it hits the positive plate?
\qquad
Problem 6 A uniformly charged disk with charge Q and radius R sits in the $x y$-plane with its center at the origin. Take z_{0} to be some point on the positive z -axis.
(a) What is the electric field at $z 0$? Leave your answer in the form of a well-defined definite integral. DO NOT INTEGRATE. (7 points)
(b) Describe the electric field for $z_{0} \ll R$. (5 points)
(c) Describe the electric field for $z 0 \gg R$. (5 points)

Problem 7 A solid conducting sphere with a 2 cm radius sits inside a hollow conductor with concentric spherical surfaces with 4 cm and 6 cm radii
(a) Suppose the inside conductor is given a net charge of $6 \mu \mathrm{C}$ and the outside conductor is given a net charge of $-9 \mu \mathrm{C}$. What is the electric field at $r=3 \mathrm{~cm}, 5 \mathrm{~cm}$ and 9 cm ? (7 points)
(b) Given the charge configuration in part (a), what is the potential at 5 cm and 9 cm ? Take the potential to be 0 at infinity. (7 points)

