PHYS 2326 - Dr. Honan - Test 2 - B

Possibly Useful Information: $\mu_{0}=4 \pi \times 10^{-7} \mathrm{~N} / \mathrm{A}^{2} \quad e=1.60 \times 10^{-19} \mathrm{C}$
Problem 1 Multiple Choice (3 points each)
[i] What is the direction of the force on a vertical wire with an upward current in the earth's magnetic field? (a) north (b) south (c) east (d) west (e) up (f) down (g) cannot be determined
\qquad [ii] A particle moves in a clockwise (when viewed from above) circle in a downward pointing constant magnetic field. What charge does the particle have? (a) positive (b) negative (c) zero (d) magnetic charge (e) cannot be determined
\qquad [iii] Three 4Ω resistors are connected in series across a 24 V battery. What is the power dissipated in each resistor? (a) 16 W (b) 48 W (c) 144 W (d) 432 W (e) none of the listed (f) cannot be determined

Problem 2

(a) Complete the table with the current through and the voltage across each resistor in the circuit. (8 points)

	100Ω	120Ω	150Ω
V			
I			

(b) What is the force on an alpha particle (2 protons and 2 neutrons) with a velocity of $\langle 2,-3,-1\rangle \times 10^{6} \mathrm{~m} / \mathrm{s}$ in a magnetic field of 8 mT in the negative z -direction? (6 points)

Page 2 of 3
Problem 3 (6 points each)
(a) What is $V_{b}-V_{a}$?

Name

(b) What is the equivalent resistance of the combination shown?
(c) What is the equivalent capacitance of the combination shown?

Problem 4 A copper wire with a 3 mm diameter is connected across a battery. At $20^{\circ} \mathrm{C}$ a 6 A current flows through the wire. At $20^{\circ} \mathrm{C}$: $\rho_{\text {copper }}=1.7 \times 10^{-8} \Omega \cdot \mathrm{~m}$ and $\alpha_{\text {copper }}=0.0039 / \mathrm{C}^{\circ}$
(a) What is the electric field inside the wire? (6 points)
(b) If the temperature is increased to $50^{\circ} \mathrm{C}$ then what is the current through the wire, assuming the battery's voltage remains constant? (6 points)

Problem 5 When an empty parallel-plate capacitor with a cross sectional area of $3 \times 10^{-4} \mathrm{~m}^{2}$ is connected across $50 \mathrm{~V}, 5 \mathrm{nC}$ of charge flows to each plate. (6 points each)
(a) What is the separation of the plates?
(b) How much energy is stored in this capacitor?

