
Chapter E

Current, Resistance and DC Circuits
Blinn College - Physics 2326 - Terry Honan

E.1 - Current and Current Density

Basic Definitions

ⅆQ is the charge passing the cross-section in time ⅆ t .

If ⅆQ is the charge that passes through some surface, usually a cross-section of a wire, in time ⅆ t then the current I is defined by

I =
ⅆQ

ⅆ t

Units:  The SI unit for current is: ampere = A = C /s

The current is related to the surface integral of a vector field, the current density J, by

I =  J ·ⅆA

Note that is is analogous to how the electric field and electric flux are related: Φ = ∫ E · ⅆA;  E and J  are vector fields and Φ and I are properties of
a surface.  When the surface is the cross-section of a wire, the above expression becomes simply I = J A.

J

Conducting Liquid

An electrode in a conducting liquid inside a conducting cup. J is the current density.



Drift Velocity

We can relate the current and current density to the flow of charge carriers.  Let q be the charge of the charge carriers.

q = charge of charge carriers

The typical case is a metal, where the charge carriers are electrons and thus q is negative.  Semiconductors can have positive or negative charge
carriers.  Define n as the density of charge carriers.

n =
 of charge carriers

Volume
The drift  velocity is the bias in the motion of the charge carriers.  Without a current the charge carriers are moving but there is no bias in the
motion; their average velocity (vector) is zero.  If there is an electric field in the conductor the charge carriers will move with a bias and the drift
velocity is the average velocity of the charge carriers.  

vd = vaverage = drift velocity

A useful analogy is the motion of gas molecules.   The average velocity of gas molecules is zero, unless there is a wind, and then the average
velocity is the wind velocity.  The wind velocity is the analog of drift velocity.

Consider the simple case of current in a wire with cross-section A.  In a time ⅆ t  all the charge in the right cylinder with base A and width
vd ⅆ t will pass the surface.  This charge is

ⅆQ =
charge

Volume
×Volume = q n × A vd ⅆ t

The current is ⅆQ /ⅆ t giving

I = q n A vd.

This can be generalized to a vector expression for the current density

J = q n vd.
For negative charge carriers the drift velocity is opposite to the current density.

E.2 - Resistance

Ohm's  Law

If  there is an electric field in a conductor then there will  be a current.   We can define the conductivity and resistivity by the microscopic
form of Ohm's law, 

J = σ E (microscopic form)
σ = Conductivity

ρ =
1

σ
= Resistivity

The conductivity and resistivity are properties of a material.  For an object, like a wire, we can define a quantity called the resistance R by the
macroscopic form of Ohm's law

V = I R (macroscopic form)

R = Resistance

Units:  The SI unit for Resistance is: ohm = Ω = V /A
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The resistance, which is a property of a wire, is related to the resistivity, which is a property of the wire's material.  We want an expression
for the resistance of a wire of length ℓ with cross-sectional area A.  The electric field is related to the voltage and the length.

ΔV = - E ·ⅆ r ⟹ V = ΔV  = E ℓ

It follows that:

J = σ E ⟹
I

A
=

1

ρ

V

ℓ
.

Ohm's law then gives

R =
ρ ℓ

A
.

V = I R relates the voltage across a resistor to the current through it.  When passing through the resistor in the direction of the current, it is a
voltage drop, a decrease in potential.  To measure the voltage across a resistor connect the leads of the voltmeter to either side of the resistor.  To
measure the current through a resistor connect the ammeter in line with the resistor.

A

V

Use of Voltmeter Use of Ammeter

Material Resistivity - ρ (Ω m)
Copper 1.68×10-8

Aluminum 2.65×10-8

Silver 1.47×10-8

Gold 2.22×10-8

Glass 105 - 108

Resistivities for Different Materials at 20°C

Example E.1 - Resistance of a Copper Wire

A 500-m length of copper wire with diameter of 3.5 mm is connected across a 1.5 V battery.  What is the current through the wire? For
copper: ρ = 1.68×10-8 Ω·m.

Solution
Using ρ, the length and diameter we can find the resistance.

ℓ = 500 m , A = π r2 = π
d

2

2

= π
0.0035 m

2

2

= 9.6211×10-6 m2 ⟹ R =
ρ ℓ

A
= 0.83708 Ω

Since we are given the voltage the current can easily be found using Ohm’s law.

V = 1.5 V ⟹ I = V /R = 1.72 A

Variation of Resistance with Temperature

Resistance in a metal is caused by collisions between the moving electrons and the vibrating atoms.  If there were no vibration in the atoms
there would be no collisions and the resistance would be zero.  As the temperature is increased the vibrational motion of the atoms increases and
the collisions increase.  This is why resistance increases with temperature.  The increase of resistivity with temperature can be described by

Δρ = α ρ0 ΔT or ρ = ρ0 (1 + α ΔT).

Here α is defined as the temperature coefficient, which is a property of a material.  ρ0 is the resistivity at temperature T0 and ρ is the resistivity at
T.  ΔT = T -T0   and Δρ = ρ - ρ0.  Multiplying by ℓ /A gives expressions for the resistance, where R0  is the resistance at temperature T0  and R is
the resistance at T  and ΔR = R - R0.
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ΔR = α R0 ΔT or R = R0 (1 + α ΔT).

In  (pure)  semiconductors,  the  conduction  mechanism  is  different  and  the  resistance  decreases  with  temperature;  it  turns  out  that  at  higher
temperatures there are more available charge carriers.

Material Temperature Coefficient - α K-1
Silver 0.0038

Copper 0.00386
Aluminum 0.00429

Gold 0.0081
Platinum 0.00393

Iron 0.00651
Mercury 0.0009

Carbon (graphite) -0.0005
Silicon (pure) -0.07

Germanium (pure) -0.05

Temperature coefficients near 20°C

One  would  expect  that  as  the  temperature  approaches  absolute  zero,  the  resistivity  would  approach  zero  but  what  is  observed  in  many
materials is much more dramatic; below some critical temperature, the resistivity abruptly drops to exactly zero. This phenomenon is known as
superconductivity.

TC
T

ρ

Resistivity as a function of absolute temperature for a superconductor. 
Below a critical temperature TC  the resistivity abruptly drops to zero.    

Example E.2 - Temperature Variation of Resistance of a Copper Wire

At  what  temperature  will  the  resistance  of  a  copper  wire  be  5%  less  than  at  20 °C?   For  copper  α = 3.4×10-3 K.  (Temperature
differences are the same in celsius as kelvin so we will use kelvin for temperature differences.)

Solution
We do not know the resistance of the wire but we do know that ΔR = -0.05 R0, so the resistance R0 will cancel.

ΔR = αR0 ΔT ⟹ -0.05 R0 = α R0 ΔT ⟹ ΔT = -0.05 /α = -14.7 K

Using T0 = 20 °C we get the final temperature.

T = T0 + ΔT = 5.3 °C

E.3 - Power and DC Voltage Sources

Power in General

Power is generally defined as the time derivative of some energy or work

𝒫 =
ⅆ

ⅆ t
Energy.

When a charge Q is moved across a potential difference ΔV  the potential energy difference is ΔU = Q ΔV .  It follows that when an infinitesimal
charge ⅆQ moves across a voltage of V the infinitesimal energy change is ⅆU = V ⅆQ.  Writing 𝒫 = ⅆU /ⅆ t and using I = ⅆQ /ⅆ t gives
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𝒫 = V I.

Power Dissipated in a Resistor

Ohm's law V = I R  relates the voltage drop across a resistor to the current through it. Using it we can write equivalent expressions for the
power dissipated in a resistor.

𝒫 = V I = I2 R =
V2

R
The energy lost to resistance is dissipated as heat.  This is called Joule heating.

Terminal Voltage

I ℰ r

Vt

- +

Treat  every DC voltage source as  an ideal  voltage source with EMF (electromotive force)   ℰ  in  series  with its  internal  resistance r.   The
voltage across the terminals Vt of the source is then

Vt = ℰ - I r.

When there is no load,  I = 0, the terminal voltage Vt is the same as the EMF ℰ.  With a load the terminal voltage drops.

Example E.3 - Terminal Voltage

The  measured  voltage  across  a  D-cell  battery  is  1.486 V when  no  current  is  drawn.  When  the  battery  produces  a  250 mA current,  its
measured voltage is 1.454 V. What is the internal resistance of the battery?

Solution
The voltage with no load (current) is the EMF.

ℰ = 1.486 V

The other voltage, with the current, is the terminal voltage.

I = 0.250 A and Vt = 1.454 V

We then solve for the internal resistance.

Vt = ℰ - I r ⟹ r =
ℰ - Vt

I
= 0.128 Ω

Circuit Diagrams and Nodes

A real-world wire has resistance.  When we draw circuit diagrams we always consider the wires to be perfect conductors.  Since R = 0, the
voltage drop across a wire is zero.  A wire in a circuit diagram is a point of constant voltage; this is what we call a node.  The most effective way
to analyze complex circuit diagrams is in terms of nodes and the circuit elements (voltage sources, resistors, capacitors, etc.) connected between
nodes.

When it is necessary to consider the real-world resistance of a wire one can simply view it as an ideal conductor with a resistor with ρ ℓ /A
of resistance placed in line.

Voltages  in  circuits  are  always  differences.   If  we  choose  some node  to  be  zero  voltage  then  we  can  assign  a  voltage  to  each  node  in  a
circuit.  A point of zero voltage in a circuit is called a ground.
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E.4 - Combinations of Resistors

Series and Parallel

R1 R2

R1

R2

Series Parallel
Any combination of resistors with one wire in and one wire out can be reduced to its equivalent resistance.  If the combination were placed

inside some black box then outside the box the combination would look like a single resistor, which we call its equivalent resistance.  For series
and parallel resistor combinations, there are simple formulas for finding these equivalent resistances.

I R1 R2 I
I1 R1

I2 R2

I Req I Req

Series Parallel
◼ Series

Resistors are in series when all the current through one passes through the others; there is no branching between them.  The total voltage is
the sum of the voltages.  

I = I1 = I2 =… and V = V1 + V2 +…

Using V = I R gives I Req = I R1 + I R2 + ….  The equivalent resistance of series resistors is given by

Req = R1 + R2 +….

◼ Parallel

Resistors are in parallel when the voltage across the one is the same as the voltage across the others.  Resistors are in parallel when they are
connected between the same two nodes, where a node is a point of constant voltage in a circuit.  The current branches and the total current is the
sum of the currents.  

V = V1 = V2 =… and I = I1 + I2 +…

Using I = V /R gives V Req = V /R1 + V /R2 + ….  The equivalent resistance of series resistors is given by

Req =
1

R1
+

1

R2
+…

-1

.

Example E.4 - Identifying Nodes

What is the equivalent resistance of this network of resistors?

R1 R2 R3

Solution
Recall that a wire in a circuit diagram is a perfect conductor, so there is no voltage drop across wires in circuit diagrams. A node
is a point of constant potential in a circuit. To identify nodes follow along a wire as far as possible without hitting some circuit
element, like a resistor, voltage source or capacitor. There are two nodes, the points drawn in the diagram; label the node on the
left as 1 and the node on the right as 2. It is useful, conceptually, to mark nodes with colors. Using green for node 1 and red for
node 2, then trace as far as you can go along perfect conductors until you hit a resistor. This gives the picture on the left below.
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The next step is to rewrite the nodes as points and draw the resistors as they are connected between the nodes. This is the picture
on the right, above. All three resistors are connected across the same two nodes so they are in parallel. We can then write down
the equivalent resistance.

Req =
1

R1
+

1

R2
+

1

R3

-1

Example E.5 - Resistor Circuit with Voltage Source

10Ω
9Ω

75 V

15Ω

The  diagram shows  three  resistors  connected  in  a  circuit  with  a  75 V battery.  Complete  the  table  with  the  voltage  across,  the  current
through and the power dissipated in each of the three resistors.

10 Ω 9 Ω 15 Ω
V
I
𝒫

Solution
First identify the three nodes. When we isolate the source from the resistors, it is then clear that the circuit is equivalent to the
one shown below on the right.

⟹

The  10 Ω  and  15 Ω  resistors  are  in  parallel  and  their  equivalent  is  in  series  with  the  9 Ω.  We  can  then  find  the  equivalent
resistance that the course is connected across.

Req = 9 Ω +
1

10 Ω
+

1

15 Ω

-1

= 9 Ω + 6 Ω = 15 Ω

This equivalent resistance determines Ibattery the current that the battery will provide. The 9 Ω resistor is in series with the battery
so the current provided by the battery will pass through it. This allows us to begin filling in the table with the current through
the  9 Ω resistor.

I9 Ω = Ibattery =
Vbattery

Req
=

75 V

15 Ω
= 5 A

With a table like this, once one thing in a column is known, we can find the rest of that column using V = I R and 𝒫 = I V

V9 Ω = I9 Ω 9 Ω = 45 V

We can also find the power. 

𝒫9 Ω = I9 Ω V9 Ω = 225 W
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The voltages across the 10 Ω and 15 Ω resistors are equal, because they are in parallel and that voltage added to V9 Ω  will give
the total voltage Vbattery.

V10 Ω = V15 Ω = Vbattery - V9 Ω = 75 V - 45 V = 30 V

I = V /R allows us to find the currents through the 12 Ω and 24 Ω resistors.

I10 Ω =
V10 Ω

10 Ω
=

30 V

10 Ω
= 3 A and I15 Ω =

V15 Ω

15 Ω
=

30 V

15 Ω
= 2 A

We can also use 𝒫 = I V  to finish the table with the last power values.

𝒫10 Ω = I10 Ω V10 Ω = 90 W and 𝒫15 Ω = I15 Ω V15 Ω = 60 W

10 Ω 9 Ω 15 Ω
V 30 V 45 V 30 V
I 3 A 5 A 2 A
𝒫 90 W 225 W 60 W

In solving such problems there is an important consistency check. The current through the 9 Ω  resistor branches into the 10 Ω
and 15 Ω, so we must have I9 Ω = I10 Ω + I15 Ω, which is clearly satisfied.

Example E.6 - An Ugly Example

What is the equivalent resistance of this network of resistors?

18Ω 45Ω

12Ω 15Ω 20Ω

20Ω

36Ω 24Ω
30Ω

20Ω

18Ω

Solution
First identify the nodes; there are five.

We now look to see what is connected between each node. 
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Between  node  1  (green)  and  node  3  (blue)  are  the  18 Ω  and  12 Ω  resistors;  two  resistors  between  the  same  two  nodes  are  in
parallel. Call their equivalent R13

′ .

R13 =
1

18 Ω
+

1

12 Ω

-1

= 7.2 Ω

Similarly, we see that the 30 Ω  and 36 Ω  are connected between node 3 (blue) and node 4 (orange); combine these to get R34.
Between node 4 (red) and node 5 (yellow) we have the 24 Ω, the 20 Ω and the 18 Ω which we replace with R45. Between node 3
(blue) and node 5 (yellow) we have the 15 Ω andthe 20 Ω which we replace with R35. Between node 2 (red) and node 3 (blue) is
just the 45 Ω resistor and between node 2 (red) and node 5 (yellow) we have just the 20 Ω.

R34 =
1

30 Ω
+

1

36 Ω

-1

= 16.364 Ω , R45 =
1

24 Ω
+

1

20 Ω
+

1

18 Ω

-1

= 6.7925 Ω and R35 =
1

15 Ω
+

1

20 Ω

-1

= 8.5714 Ω

⟹

Now we have reduced the resistor network to the diagram above on the left. R34 and R45 are in series and that is in parallel with
the R35. Combine these to get R35

′  as shown in the diagram to the right.

R35
′ =

1

R35
+

1

R34 + R45

-1

= 6.2558 Ω

This resistance is then combined in series with the 20 Ω, which in turn is parallel with the 45 Ω. We can then find the equivalent
resistance between nodes 1 and 2 by adding the R13 which is in series.

Req = R13 +
1

45 Ω
+

1

R35
′ + 20 Ω

-1

= 23.78 Ω

Node Reduction

Not all resistor networks can be reduced to their equivalent resistance using the series and parallel rules mentioned above.  As an example,
consider the following network of resistors

After staring at this for a while, one should become convinced that no pair of resistors is either in series or parallel. For these networks another
approach is needed.  The diagram below shows the idea of this method.  Where three resistors R1, R2 and R3 diverge from a central node, marked
node 0 in the diagram, we can replace these three with three other resistors  R12

′  , R13
′   and R23

′ .
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After staring at this for a while, one should become convinced that no pair of resistors is either in series or parallel. For these networks another
approach is needed.  The diagram below shows the idea of this method.  Where three resistors R1, R2 and R3 diverge from a central node, marked
node 0 in the diagram, we can replace these three with three other resistors  R12

′  , R13
′   and R23

′ .

R1 R2

R3

0

1 2

3

R12
′

R23
′R13

′

1 2

3

⟹

The new resistances can be related to the old ones by the simple expression

Rij
′ =

Ri Rj

R∥
where R∥ =

1

R1
+

1

R2
+

1

R3

-1

Example E.7 - Node Reduction

Find the equivalent resistance of the following network of resistors.

24Ω

12Ω

8Ω

12Ω6Ω

Solution
Labeling the nodes we have two internal nodes 3 and 4. The other two nodes 1 adn 2 are external, meaning that these are what
we are finding the equivalent resistance across.

24Ω

12Ω

8Ω

12Ω6Ω

1 2

3

4
The node reduction procedure removes an internal node (3 or 4 here) and replaces the three resistors connected to the removed
node with three new resistors. Here we will choose to remove node 4. The three resistors connected to node 4 are the 6 Ω and
the two 12 Ω resistors. First we calculate R∥ using these three resistances.

R∥ =
1

R1
+

1

R2
+

1

R3

-1

=
1

6 Ω
+

1

12 Ω
+

1

12 Ω

-1

= 3 Ω

The new resistances are calculated using

Rij
′ =

Ri Rj

R∥

For our three removed resistance we find the new resistance values.

6 Ω×12 Ω

3 Ω
= 24 Ω ,

6 Ω×12 Ω

3 Ω
= 24 Ω and

12 Ω×12 Ω

3 Ω
= 48 Ω

These resistors connect the far tip of the two resistors used in calculation. For example, the 48 Ω resistor connects the far tip of
the two 12 Ω.
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24Ω

12Ω

8Ω

12Ω6Ω

1 2

3

4

⟹ 24Ω 48Ω

24Ω

24Ω8Ω

1 2

3

On the left are the three resistors we remove are shown in red. At the right are the three new resistances show in green.

We now have the network of resistors to the right. Although we have not reduced the number of resistors we have removed a
node and the circuit is now simpler; there are parallel resistors now. Between nodes 1 and 3 we have the 8 Ω and 24 Ω in parallel
and between 2 and 3 we have the 48 Ω and 24 Ω resistors. Call these new resistances R13 and R23.

R13 =
1

8 Ω
+

1

24 Ω

-1

= 6 Ω and R23 =
1

24 Ω
+

1

48 Ω

-1

= 16 Ω

These two resistors are then in series and their equivalent is in parallel with the 24 Ω resistor between nodes 1 and 2. The overall
equivalent is then found.

Req =
1

24 Ω
+

1

R13 + R23

-1

= 11.48 Ω

Students are encouraged to repeat this calculation with node 3 removed instead of 4. The procedure is the same and, of course,
the answer is also the same.

Node Reduction - General N Resistor Case

The formula above generalizes to N resistors leaving a point.  Call the resistors Ri with  i = 1, ... , N.  They connect a common node labeled
by 0 with an external node labeled by i.  Now we replace the N resistors with ones connecting all possible pairs of the N external nodes.  The
new resistances have the values

Rij
′ =

Ri Rj

R∥
where R∥ =

1

R1
+

1

R2
+ ...

-1

.

The N = 2 case is just two resistors in series and the series formula is a special case of this.

N = 2 ⟹ R∥ =
1

R1
+

1

R2

-1

=
R1 R2

R1 + R2
⟹ R12

′ =
R1 R2

R∥
= R1 + R2

Summarizing the number of new resistances we have this table.

Number of Ri Number of Ri j
′

2 1
3 3
4 6
N N (N - 1) /2

Proof of Node Reduction Formula

R1 R2

R3

I1 I2

I3

V0

V1 V2

V3

R12
′

R23
′R13

′

I1 I2

I3

V1 V2

V3

⟺

For clarity, we will consider the proof of the formula for the three resistor case but the following derivation can easily be modified to prove
the formula in the general case.  Take the voltages at each node to be V1, V2, V3 and V0.  Take the outward (away from 0) current through Ri  as
Ii.  It follows that
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For clarity, we will consider the proof of the formula for the three resistor case but the following derivation can easily be modified to prove
the formula in the general case.  Take the voltages at each node to be V1, V2, V3 and V0.  Take the outward (away from 0) current through Ri  as
Ii.  It follows that

I1 =
V0 - V1

R1
, I2 =

V0 - V2

R2
and I3 =

V0 - V3

R3
.

The condition that the currents sum to zero gives V0.

I1 + I2 + I3 = 0 ⟹ V0
1

R1
+

1

R2
+

1

R3
=

V1

R1
+

V2

R2
+

V3

R3

⟹ V0 = R∥
V1

R1
+

V2

R2
+

V3

R3
where R∥ =

1

R1
+

1

R2
+

1

R3

-1

Using this value for V0 we can find the current as a function of voltage

I1 =
V0

R1
-

V1

R1
=

R∥

R1

V1

R1
+

V2

R2
+

V3

R3
-

V1

R1
.

Multiply the term on the right by one, in the form R∥ /R∥, then cancel terms and regroup.

I1 =
R∥

R1

V1

R1
+

V2

R2
+

V3

R3
-

V1

R1
×R∥

1

R1
+

1

R2
+

1

R3

=
R∥

R1

V2 - V1

R2
+

V3 - V1

R3
=

V2 - V1

R12
′

+
V3 - V1

R13
′

where we have used 

Rij
′ =

Ri Rj

R∥
.

This gives the simple result

I1 =
V2 - V1

R12
′

+
V3 - V1

R13
′

.

Clearly, there is nothing special about I1 in the above derivation and we can derive similar results for I2 and I3.

I2 =
V1 - V2

R12
′

+
V3 - V2

R23
′

and I3 =
V1 - V3

R13
′

+
V2 - V3

R23
′

The above relations prove our result.  It shows the current to voltage relation is the same for the 3 resistances R1, R2  and R3  leaving the 0
node as for the replacement resistances R12

′ , R13
′  and R23

′   connecting the external nodes.

The Equivalent Resistance Theorem

Any  network  of  resistors  with  two  external  nodes  may  be  reduced  to  a  single  equivalent  resistance  between  the  external  nodes.   An
algorithm for finding the equivalent resistance of a network follows.  

Specify the resistor network with a set of nodes, two external and the rest internal, and with a set of resistors, where each resistor is labeled
by a resistance and by the pair of nodes it connects.

The first step is to remove all resistances in parallel; these are resistors between the same two nodes.  The second step is to apply the node
reduction procedure to any of  the internal  nodes.   Continue iterating these two steps until  all  internal  nodes are removed and there is  a  single
resistor.  

To make this most calculationally efficient, remove an internal node with the smallest number of resistances.  First look for a pair in series
(or N = 2.)  If none are in series then look for N = 3, then N = 4, etc.

E.5 - Combinations of Capacitors
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C1 C2

C1

C2

Series Parallel
As we saw for resistors, any network of capacitors can be reduced to an equivalent capacitance.  For capacitors its charge plays the role the

current played in resistors.  (Recall that I = ⅆQ /ⅆ t.) 

C1 C2

C1

C2

Ceq Ceq

Series Parallel

+Q -Q +Q -Q

+Q -Q

+Q2

+Q -Q

-Q2

+Q1 -Q1

 The voltage to charge relation for a capacitor is

V =
Q

C
.

◼ Series

In the case of series resistors the charge on each capacitor is the same and both are the same as the charge on the equivalent.  The voltages
add.

Q = Q1 = Q2 =… and V = V1 + V2 +…

Using the voltage to charge relation gives  QCeq = Q /C1 + Q /C2 + … which gives the expression for equivalent capacitance

Ceq =
1

C1
+

1

C2
+…

-1

.

◼ Parallel

For parallel resistors the voltages are equal and the charges add.

V = V1 = V2 =… and Q = Q1 + Q2 +…

Using Q = C V  gives Ceq V = C1 V + C2 V + …  giving

Ceq = C1 + C2 +… .

Note that the series and parallel formulas for capacitors are reversed relative to their resistor counterparts.

◼ Node Reduction

The node reduction formula also applies to capacitors as well.  The new capacitors have the values

Cij
′ =

Ci Cj

C∥

but the C∥ has a different form.

C∥ = C1 + C2 +…

Example E.8 - Equivalent Capacitance

What is the equivalent capacitance of the capacitor network shown?
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2 μF3 μF

3 μF

9 μF

8 μF

4 μF

Solution
First do a nodal analysis on this capacitor network. It is then clear how they are connected.

The  two  3 μF  and  the  9 μF  capacitors  are  in  parallel,  as  are  the  2 μF  and   8 μF  capacitors.  We  add  to  find  the  equivalent
capacitances.

3 μF + 3 μF + 9 μF = 15 μF and 2 μF + 8 μF = 10 μF

These two resulting capacitances are in series

1

15 μF
+

1

10 μF

-1

= 6 μF

and this 6 μF is then in parallel with the final 4 μF giving the overall capacitance.

Ceq = 6 μF + 4 μF = 10 μF

E.6 - Kirchhoff's Rules
Kirchhoff's rules are used to solve for the currents in the case of a circuit involving many resistors and DC voltage sources.  A junction is a

point in the circuit where three or more wires meet; if there are just two wires it is just a bend in the wire and not a junction.  For every branch in
the  circuit  we  can  define  a  current.   Kirchhoff's  rules  gives  a  set  of  linear  equations  in  the  currents.   It  is  not  essential  to  choose  the  proper
direction for the currents, and in fact one typically doesn't know the current directions until a solution is found.  If the chosen current direction is
wrong then that current will be negative when the solution is found.

Junction Rule

At every junction in a circuit the total current in is equal to the total current out.

Iin =Iout.

In  every case (at  least  where the circuit  is  one connected piece)  the junction rule  equations will  not  be independent;  there  will  always be one
equation more than is needed.  Summing all the equations gives ∑I = ∑I  which is equivalent to 0 = 0.  (This is because every current leaves one
junction and enters another.)  Because of this any one junction rule equation is the negative of the sum of the others.  To get an independent set
of equations one must delete one (any one) of the equations.
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Loop Rule

Around every closed loop in a circuit the sum of all the voltage gains is zero.

ΔV = 0

The sign conventions are: 

When moving through a resistor in the direction of the current:  ΔV = -I R.
When moving through a resistor opposite the current:  ΔV = +I R.

When moving  through a DC source from - to + terminals:  ΔV = +ℰ.
When moving  through a DC source from + to - terminals:  ΔV = -ℰ.

I R ℰ

ΔV=-IR ΔV=+ℰ

ΔV=+IR ΔV=-ℰ
To avoid non-independent equations consider only the smallest loops.

Example E.9 - Kirchhoff’s Rules 1

Find an independent set of equations that could be solved for the five currents: I1, I2, I3, I4 and I5.

V5

R1

I1

V1

V2

I2

R2

V4I4R4

R3

I3 V3

I5

R5

Solution
Below, the three junctions are labeled 1, 2 and 3 and the the loops are shown as the counterclockwise arrows.

V5

R1

I1

V1

V2

I2

R2

V4I4R4

R3

I3 V3

I5

R5

1

2 3

1

2

3

Junction Rule

At each junction, the total current in equals the total current out. Omit any one of the junction rule equations.

Junction 1: I1 = I2 + I3 + I5 (Omit this)

Junction 2: I2 + I4 = I1

Junction 3: I3 + I5 = I4

Any one  junction  rule  equation  is  equivalent  to  the  sum of  the  others,  so  one  should  be  omitted.  Here  the  first  was  removed
since it had the most variables but either of the other two could also have been removed. Note that the number of wires meeting
at a junction must be the same as the number of currents in that equation.

Loop Rule
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For  each  loop  the  sum  of  the  voltage  gains  is  zero.  Following  the  sign  conventions  described  above  we  get  three  more
independent equations.

Loop 1: 0 = V2 - I2 R2 - I1 R1 + V1

Loop 2: 0 = -I3 R3 + V3 + V4 - I4 R4 + I2 R2 - V2

Loop 3: 0 = V5 - I5 R5 - V3 + I3 R3

After omitting the one of the junction rule equations we have a set of five independent linear equations that can be solved for the
five unknown currents.

Example E.10 - Kirchhoff’s Rules 2

Find the two unknown currents and the unknown EMF: I1, I2 and ℰ.

4Ω

32V

I1

5A

4Ω

3Ω

ℰ

I2

Solution

4Ω

32V

I1

5A

4Ω

3Ω

ℰ

I2

1

2

1 2

Using the junction rule for junction 1 gives the same expression as for junction 2.

Junction 1: 5 = I1 + I2

The two loop equations are.

Loop 1: 0 = +5×4 - 32 + 4 I1

Loop 2: 0 = -3 I2 + ℰ - 5×4

Loop 1 equation allows us to find I1.

0 = +5×4 - 32 + 4 I1 ⟹ I1 = 3 A

The junction equation gives us I2

5 = I1 + I2 ⟹ I2 = 5 - I1 = 2 A

and the loop 2 equation then gives us the unknown ℰ.

0 = -3 I2 + ℰ - 5×4 ⟹ ℰ= 26 V
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